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An Explanation

These notes consist of three parts. First there is a

brief essay, WHAT IS A TEACHER. Then comes NUMBER SYSTEMr,

consisting of four chapters. Finally there is a sequence of

notes on lectures given in the Spring Quarter, 1968.

The lecture notes begin with page 4 of Lecture 11. The

four chapters of NUMBER SYSTEMS are essentially an elaboration

and reworking of the material which was contained in the first

11 lectures of the Spring, 1968 course. The notes wire taken

at my 1968 lectures by Arthur Kessner, a graduate student, and

during the summer of 1968, he collaborated with me in the

writing of Chapters 1-4 of NUMBER SYSTEMS. This work was sup-

ported by Educational Development Center.

The subject matter of the course is concentrated about

three number systems: whole numbers, integers, and rational

numbers. Ideas of logic and set theory are brought into the

discussion incidently as needed for developing the number

systems, and are not emphasized for their own sake.

The material in Chapters 1-4 of NUMBER SYSTEMS is organ-

ized in an unusual way. Each chapter is divided into sections,

and each section is identified as belonging to one of three

"tracks" which are interwoven throughout NUMBER SYSTEMS.

Track A presents basic mathematical ideas. Track B consists

principally of ideas for work by Mathematics 15 students, by
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means of which they can gain mastery of the conceptual mat-

erial of Track A. Some of the work is in the form of exercises.

Topics are suggested for possible discussion in the section

meetings of the course. Occasionally a possible long-term

project is suggested. Finally, in Track C we present same

--ideas to indicate how the conceptual material of Track A might

be brought by a teacher into the elementary school classroom.

Berkeley

August, 1969 Leon Henkin



WHAT IS A TEACHER?x

Leon Henkin

Of course a teacher is someone who teaches -- not just occasionally,
but someone who works at teaching. And teaching is helping to learn.
But what is learning?

Most people-will agree that learning is an activity you have to ac-
complish by yourself. It is like eating. Someone can tell you where
food is, or can set it before you -- they can even put it in your
mouth if you're a baby, say, or crippled. But the final act of eating
you must perform yourself. And so with learning.

So helping someone to learn -- that is, teaching -- is a little like
helping someone to eat. At the beginning a mother selects the food,
buys it and brings it home, prepares it, puts it in the baby's mouth,
wipes it off his chin, and puts it back in his mouth again. But her
object is to get her child to eat independently. Ultimately he should
be able to choose his own food to satisfy the requirements of both
health and taste; he should be able to obtain, prepare, and eat his
food himself.

And so, again, with learning. Unless a teacher helps her pupils to
become independent of her, unless she conse-17.usly heads toward the day
'hen they can do well by themselves, at choosil.g what to learn, at
acquiring the necessary materials, and finally at learning, she will
not succeed in the ultimate sense -- even if her pupils have gathered
much information while they are with her.

If we take this viewpoint seriously, it has far-reaching implica-
tions for the organization of our schools. It does not mean that the
teacher just gives heavy homework assingments. Rather, it means that
assignments are designed to 1e .d to genuinely independent thought, and
that the activities in the school itself are directed toward encoura-
ging students to pursue individual interests, to make discoveries, to
acquire a taste for study, to develop an ability to gather information,
and to understand.

What gives to teaching its greatest challenge, and what makes its
problems so vastly more complex than those involved in helping a child
to eat, is the tremendous variation in the learning pivcess from one
individual to another. The scientific study of learning is barely
beginning, but it is recognized generally that there is a variety of
basic patterns of learning, and that superimposed upon the patterns
are the individual ability levels distributed over what are probably
thousands of separate characteristics which enter into the larning
apparatus of a given personality. Over and above the differences in
predisposition and capacity to learn, the learning process, we know,

Reprinted from GOALS FOR MATHEMATICAL EDUCATION OF ELEMENTARY SCHOOL
TEACHERS, A Report of the Cambridge Conference on Teacher Training,
Houghton Mifflin Co., Boston, 1967.
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is highly sensitive to the total experience of an individual -- his
relations within the family and with friends, his contact with mass
communication media, his reading, his dreams, his play. Our demo-
.:ratic aim of educating each person to the point where he can realize
his fullest potential places upon the teacher a great responsibility;
she should study and understand each one of her pupils as a distinctive
individual, and devise ways of helping hem to learn what is peculiarly
suited to his needs, his interest, and his ability.

Side by side with the cnntinuing effort to analyze her students and
tc understand them sympathetically, a teacher has the obligation to
work continuously at the selection of the facts, techniques, ideas,
and attitudes which she will ask her students to learn, and at the
development of the methods and de-ricewshe will employ to help them
accomplish this learning. In thts respect we must understand clearly
that the nature of our society and the role of the individual in it
are undergoing certain revolutionary changes and are disrupting pat-
terns which have been constant heretofore for generations, if not for
centuries; and we must clearly see that these changes impose upon the
teacher a concomitant pattern of new duties. Nowhere is this clearer
perhaps th2.n in the area of mathematical instruction -- although in
reality Our developing ideas about physical and biological science,
about the sdudy of language (foreign and domestic), and the study of
society, and our developing attitudes concerning intergroup relations,
impJEte de::ands on the teacher which are just as heavy though perhaps
less clearly articulated.

What are the change: in mathematics itself which must be reflected
in the elementary classroom? For one thing, the sheer volume of new
mathematical reseal cif has Increased year by year at a sharply acceler-
ating rate, and a significant fraction of this work affects our under-
standing of the most fundamental concepts. In direction, mathematics
has become 7.ach more abstract and, paradbxically, because of this ab-
straction has become applicable to, and has derived sustenance from,
a much wider range of applications. From the study of numbers and geo-
metric figures it Las broadened its scope to include every domain
where form and structure can be discerned. Finally, the art of com-
putation has become infinit,:ly more complex, and the practice of it has
shifted the routine burdens of execution to electromechanical devices
while demanding much more ir the way of control and design from the
practitioner.

All these developments require not only that the teacher must alter
at this time the mathematical curriculum which has heretofore remained
static but also that she must continue to alter it from year to year
throughout her teaching career. They mean; too, that the teacher of
elementary mathematics must work not merely at training students to
follow and apply prescribed computational routines, but also at getting
them to understand abstaact concepts to the point where they can devise
and test new computational routines; she must stimulate them to for-
mulate new concepts arising from diverse realms of experience and to
search for the properties which relate these to concepts; and she must
educate them to employ relatively sophisticated patterns of mathematical
language so that they can communicate freely about their w-Irk.

These multifold obligations which we are delineating for the ele-
mentary school teacher entail two principal positions about the indi-
viduals to whom we assign this work. In the first place, the amount
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of specialized knowledge, ability, and interest required to carry outthese tasks in even a competent, not to say inspiring, manner, obviously
transcends what can be expected of a single individual. We must beginto think of the elementary teaching corps as composed of a variety of
persons contributing in diverse ways to a common goal. And, in thesecond place, we must recognize that the satisfactory discharge of her
duties requires of a teacher many kinds of professional activityother than direct contact with students, and we must provide such
working conditions and environment as will facilitate the prosecution
of these activities. Let ua examine these two propositions sepurately.

The idea of specialization among elementary teachers at first sug-gests the kind of instructional pattern now found at the high school
levels. Most educators consider this pattern unsatisfactory at the_

elementary levels. Actually, however, the concept of specialized teaching
is compatible with a host of instructional patterns quite different in
character. For example, insofar as we require each child to be thesubject of careful and sympathetic observation designed tP discoveroptimum methods for developing his individual potential, it seems clearthat each child should be associated with a single teacher, say "A",who can work with and study him in a variety of learning conditions

-and subject areas. At the same time, since "A" cannot be expected tobe expert in all the everchanging curricular areas, we might wish asecond teacher, "B", to divide her time among a larger group of children,
seeing each child for only a short part of the day for the purpose ofdealing specifically with a single subject area, such as mathematics.
And of course we wluld expect "A" and "B" to work together, with
respect to their common students, by intercommunication and joint pro-jects. There thus emerges an instructional pattern very differentfrom what we find in high schools and colleges, one in which a givenpupil encounters more than one teacher simultaneously at certain partsof the day.

One implication of such a program is the prospect of a teaching force
sharply increased in size. Such an increase may, in fa.ct, prove neces-sary or desireable, but it is by no means required by a scheme of co-operative teaching. Of course, if our view of the teaching environment
is restricted to the conventional, closed classroom containing thirtyseats facing the front of the room, then simple arithmetic will showindeed that to have more than one teacher in a room at one time requires
an increase in the total number of teachers. one the other hand, re-verting to our early desideratum of independent, individual learning,we can imagine a school in which single students, or small groups,work by themselves for significant periods of time in semiprivate areaswithin open rooms of considerable size with several teachers, including"A" and "B", circulating and providing help and observation in avariety of ways. Such a program might well be feasible with no increasein total size of instructional staff.

It should be emphasized that there is wide latitude fiRr experimen-
tation in the cooperative teaching patterns which may be evolved to
accomodate specialized teaching in the elementary school. The acti-vities undertaken by elementary school teachers who have specialized
in a subject area such as mathematics can range from dealing with
'.ndividual students to conductirg in-service courses for other teachers,to monitoring new text materials and innovations in technological tea-ching devices, to name but three examples; and we can envision groups



--1J1:-teachPrs-each_slfwhose act-ivities are concentrated among a differentfew of the varied forms of specialization.

But let Us look now at our second proposition: that an inventory ofthe new responsibilities being assigned to elementary school teachers
requires us to provide adequate time and a suitable environment for alarge variety of activities which do not involve direct contact withpupils. What does this mean in detail?

At present the normal distribution of an elementary school teacher's
time involves seven hours a day at school: five are spent in directsupervision of stadents in class or for brief periods on the playground),one is designated as a lunch hour which often involves further contact
with students in the cafeteria or even classroom), and one is spent
in preparing the classroom before and after:' the students are in sessionand in a multitude of clerical tasks such as completing pupil atten-dance forms. Additional time in SChnnl Is required on occasion to at-tend staff meetings, in-service training sessions, parent conferences,or PTA meetings. And work at home is expected Lo cover grading ofstudent papers, preparation of lessOns and inspection of text books.Essentially no time is provided fc-r teachers to discuss problems in-volving curriculum or methodology, no time, space, or materials are
provided fr;r individual study, and the desirability of visits by teachersto pupils' homes is ignored. It is fairly evident that the wist dedi-cated and efficient of teachers can barely be expected to dischargeeven the most traditional instructional duties in a satisfactory mannerwithin such painful circumstances. To expect her to measure up, undersuch conditions, to the kind of job we have outlined is absurd.

(,) What sort of school environment can we imagine within which we couldrealistically expect a teacher to perform the tasks we have listed?Perhaps an average of three hours per day of contact with the pupils isa reasonable goal at which to aim. Subprofessional teacher's aidesmust be engaged to provide clerical assistance and to free the teacherf.L3111 routine chores so that she can concentrate on her primary work.Help with homework and playground supervision is desireable, though theteacher will wish to maintain some contact with these student activities.Space and facilities for individual study, or for conferences among smallgroups of teachers, must be available; the most baAic library items, suchas current journals in education and subject areas, should be on handin a suitable room of the school; and time for access to more sub-stantial library centers in the school district should be considereda normal pert of the workday. Beth subject specialists and generalteachers will wish to study their individual students in depth, andeach schc',o1 indubitably will have ably manned facilities for psycho-logical testing and research. Those aspects of instruction which canbe made routine, such as drill in the application of algorithms, willbe assigned to compater-based machines, so that the time of teachersmay be conserved for the truly creative aspects of instruction. Filmsand projection rooms, as well as properly equipped laboratdries forscience, language stvdy, and mathematics, will be among the teacher'stools. Administrative assistance and computerized aids will facilitatethe testing and regrouping -.-f students where instruction is organizedin ungraded patterns. The teacher will be expected and encouragedC \to continue her studies:. in the material of her subject area as well asin methodology, and a regular system of sabbatical leaves will be avail-for those teachers wishing to deepen their penetration of some aspectof their work.

1
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It will not have escaped the reader's attention that the creationof such a stimulating environment for teaching and learning is likelyto involve considerable increase in the cost of education. To someextent the economic cost may be lightened because the assignment ofroutine instructional tasks to computer-based machines and the wide-spread and persistent encouragement of individualized self-study willtend to lower the teacher-pupil ratio. In this connection we may expectto see increasing use of students themselves as instructional aides,for learning-by-teaching is a phenomenon long familiar to teachers--but not adequately exploited as a systematic method of instruction.

Any savings effected by reducing the teacher-student ratio will bemore than offset, however, by the increased salaries which will haveto be provided to assure an adequate supply of sufficiently talentedindividuals. The present miserable salary scales prevailing in mostschool districts take improper advantage of the fact that the greatbulk of elementary teachers do not need to support a family with theirincome from teaching. But for the teaching profession of the futurewe shall have to attract many men and women who can fashion a full-time, lifelong career upon their work. Indeed, for this purpose whshall have to do much more than raise salaries. We shall have tocreate a structure within the profession of elementary teaching wherebymerit is given due recognition, and wherein advancement from one levelof specialized teLching to another, involving increased responsibilitynd rewards, can lontinue over a long span of years without being di-everted from teaching to administration.

. And so we return to the question with whch we began -- What is ateacher? In part the answer will be determined by the decisions ofsociety, by the demands which it places upon teachers, and the supportit provides. In part the answer will be .determined by the decisions ofof those individuals who dedicate themselves to a career of scholar-ship and cf "helping to learn. It is not overly drama:;ic to say thatthese decisions 'will turn out to be critical in shaping the destiny ofmankind.

It falls to us, the contemporary scholars and educators, to point outthe possibilities to society and to inspire the individuals who willfollow us.
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Part 1: The system of whole numbers

Chapter 1: Number systems; what we learn first.

§1 (Track A)

A number system consists of a set of objects called

numbers, together with certain things we call operations

on the numbers. In Part 1 we shall study the system of

whole numbers, 0, 1, 2, 3, ... , together with the fam-

iliar operations of addition (+) and multiplication (.)

on these numbers. In Part 2 we shall study number sys-

tems involving the integers, which in addition to the

whole numbers include the negative integers -1, -2, -3, ...,

and in Part 3 we shall deal with number systems involving

the rational-numbers, which in addition to the integers

include numbers such as 5
- 12/7, etc.

There are too many whole numbers for us to write down

a name for every one of them, so we often content our-

selves with writing names for the first few and then

using three dots to indicate the others. 0, 1,.2, .

We shall use the letter "W" as a name for the set whose

elements are all of the whole numbers 0, 1, 2, ...

If we have written the names for several objects,

say the Eiffel Tower and the city of Moscow, and if we

wish to talk about the set having those objects as its

elements, we form a name for this set by enclosing the

list of objects within braces. For example, (Eiffel
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Tower, Moscow) is the set whose two elements are the indi-

cated tower and city. Using this convention we see that

(0, 1, 2, ...) is the set of all whole numbers, that is,

the set W. We express this by the sentence

(0, 1, 2, ...) = W.

The equality sign means-that the thing named (or aescribed)

on the left is the very same object as the thing named on

the right. (For example, we can write: Pierre Curie = the

husband of Marie Curie.)

If A is a set having several elements (of any sort

whatever), we can attach a whole number to A by a process

called counting its elements. This process is usually the

way in which numbers are first introduced to young children.

We shall use the symbol "n(A)" to denote the number ob-

tained by counting the elements of A; in other words, n(')

= the number of elements in A. r'or example,

n((Moscow, Eiffel Tower)) = 2.

A child learns to count by imitation. In order for us

to understand the process of counting we must analyze the

components which enter into this process.

In the first place, an obviously important component

is the recital of the numbers in a certain fixed order:

one, two, three, ... . If a child begins mixing up the

order of the numbers, say one, four, five, two, ..., he is

not likely to arrive at a correct count.

In the second place, the numbers thus recited in their
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standard order are "attached" to the objects being counted --

for example, by touching the objects one at a time as the

numbers are called out. This is often a difficult process,

for every object must be touched (i.e., must have a number

attached to it), yet no object may be touched more than

----once. If we continue this process we arrive at a last ele-

ment of the set A, that is, an element such that, after it

has been touched, there are no elements of A left untouched.

The number called out as we touch this last element of

the set A is n(A) t.le number of elements in A.

If there are very few elements in A, it is not too

hard to remember which elements have already been touched

(i.e., counted) at each stage in the counting process. If,

however, there are a large number of elements in A, if they

happen to look very like one another, and especially if

they are scattered in a very disorderly fashion, then the

process of counting by touching can become exceedingly

difficult -- for a grown person as well as for a child.

For under these conditions jt becomes difficult to tell,

after a while, whether a given element of A has been left

out or has been counted before.

What are some of the ways we can ease the burden of

a difficult counting job? One way is to relieve our memory

by marking each object in some way as we touch it; even so,

in a great crowd of objects we may not find it easy to be
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marked. A quite different method is to "line up" the ele-

ments of A (if, that is, they can be easily moved about).

Once the elements have been arranged in a linear array, one

after the other, the counting process becomes greatly

simplified.

Indeed, if the objects of a-set are d11-15.ned up-in--

a row, about the only thing that can go wrong when a child

tries to count them is if he runs out of numbers. That is,

the child touches one of the objects and calls out a number,

then he moves on to the next object but he doesn't know

which number comes after the last one he called out.

Of course this doesn't often happen to grown-ups in

our society, but among young children it happens frequently.

First a child may learn to count to three; then to ten, then

to thirty, then to ninety-nine. Eventually, he no longer

takes pride in how far he can count because he comes to

understand the systematic method of naming.the numbers in

their standard order (that is, the numeration scheme). He

then sees that he can count "as far as he wants".

§2 (Track B)

1. Notation for sets. A set is an abstract object

associated with certain other objects which are called its

elements, or members. Given any objects whatever, there is

a set having no other elements but them. Furthermore, the

elements completely determine a set -- it is impossible to
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have two different sets which have exactly the same ele-

ments. (This is known as the principle of extensionality.)

For this reason (0, 1, 2, 3), the set whose elements are

the numbers 0, 1, 2, and 3, is the same set as (0, 3, 1, 2),

the set whose elements are the numbers 0, 3, 1, and 2.

That is, we have (0, 1, 2, 31 = (0, 3, 1, 2). We see from

the principle of extensionality that if A and B are two

different sets, then one of them must have an element which

is not an element of the other.

The set (0, 2, 0, 3, 0, 1, 4, 3) is the set whose ele-

ments are the number 0 and the number 2 and the number 0

and the number 3 and the number 0 and the number 1 and the

number 4 and the number 3; that is, it is the set whose

elements are the numbers 0 and 2 and 3 and 1 and 4. Hence

we may write (0, 1, 2, 3, 41.= (0, 2, 0, 3, 0, 1, 4, 3).

Furthermore, we have (0, 1, 2, 3, 4) = the set of all whole

numbers less than 5.

2. Exercise. Consider the following sets Z, H, B,

C, and D.

Z = (0, 2, 4, 8, 6)

H = the set of all female presidents of

the U.S.A. during the 19th century.

B = (8, 4, 4, 0, 2, 0, 6)

C = ( )

D = the set of all even whole numbers less than 8.
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(a) For each pair of distinct letters chosen from among

"Z", "H", "B", "C", and "D" form a true statement by

employing one of the symbols " = " or " " between

the letters.

(b) How many elements does the set (Z, H, B, C, D) have?

(c) n(Z 5. Compute n(H), n(B), n(C), and n(D).

3. Empty sets. The set H (in the previous exercise)

is said to be empty because it has no elements. Similarly,

the set C is empty. Actually, there is only one empty set,

since if A and B are any sets each of which is empty, then

we must have A = B, because if we had A /13 then either A

or B would have to contain an element which is not in the

other -- by the principle of extensionality mentioned in

item 1 above. A common name for the empty set is " 0 ".

Thus 0= ( ).

4. Exercise. Give three different descriptions of

the empty set. (Compare the description of the set H in

Exercise 2 above.)

5. Exercise. Indicate whether each of the following

sentences is true or false. Justify your answer.

(a) If x,y are any persons such that x = y, then also

the father of x = the father of y.

(b) If x2y are any persons such that the father of

x = the father of y, then also x = y.
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5. Classroom discussion. Discuss ways of determining

whether two given sets have the sane number of elements,

and if not which set has more elements. Some ways do not

require the use of numbers at all. Are there ways which

apply to sets of movable objects which cannot be used with

sets of planted trees?

7. Classroom discussion. Using only the 3 letters

"A", "B", and "C", discuss several different methods for

combining them to obtain a system of names for each of the

wliole numbers 0, 1, ..., 20. Recall the Roman Numeral Sys-

tem -- how many whole nuMhers are named in this system

using only the letters "I", "V", and "X"?

§ 3 (Track C)

1. Describing objects and sets. At the kindergarten

and first-grade levels there is an abundant supply of small

physical objects in every classroom -- crayons, blocks,

books, for example. Give the children much practice in

describing sets having these objects as elements. At first

they will form "naturally grouped" olements, such as all

the crayons in a certain box, or all the books on a certain

shelf. But they should then be led to form other sets con-

sisting, for exaiaple, of a certain book and two certain cray-

ons. At first the specific items may be identified by

pointing and saying "This", but children should be led to
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describe objects without pointing, such as "The paper on

the teacher's desk which is nearest the window". Make a

game out of this.

Children should be led to bestow letters as temporary

names for designated objects, e.g., "Let A be the window It

-the front of the room".--Then-they should use-the "symbols--

" = " and " " between such letters to form true state-

ments. they can thus write sentences before they can spell.)

They should also use the phrases "equals" and "is unequal

to" orally, as in "The piece of chalk on the floor equals

the piece of chalk used by Robert to write his name".

Introduction of the empty set will provide lots of fun

as children delight in impossibilities: Each child should

give some description of the empty set, e.g., "the set of

children with 5 ears", or "the set of chairs hanging from

the ceiling".

Describing unit sets, i.e., sets containing exactly

one element, can also be fun. Is the set of all boys in

the class who have a sister named Sue, a unit set? If not,

how about the set of all brown-eyed boys in the class who

have a sister named Sue? Have each child describe a set of

people in the classroom, and discuss the question whether

there are two different descriptions of the same set; use

the language "equals" or "is unequal to" between two set-

descriptions, as appropriate.



Page 1.9

§11 (Track A)

The need for a schematic way of naming the whole num-

bers arises because the numbers go on and on -- there is

no last one. However far along we get in counting, there

is always a next number beyond the one we are at. For

this reason we can never hope to give individual names to

the successive numbers in an unrelated way, as we can to

the successive children of a family. If we want each whole

number to have a distinctive name, we need a numeration

scheme which tells how, given the name of any number, we

can form the name of the next number from it.

As we have indicated above, at a certain stage child-

ren "catch on" to this scheme, acid then they lose interest

in the game of counting higher and higher. But the scheme

is seldom described explicitly to them by a teacher, and

indeed a clear and full mathematical description of the

numeration scheme becomes quite difficult and sophisticated.

Let us see how one would begin.

First, of course, come several numbers to which we do

give separate and independent names. These are the first

ten whole numbers, denoted by the familiar arabic numerals:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9. The order of these is estab-

lished in the manner indicated by the display in the pre-

vious sentence, and this plays a key role in describing

---the scheme for naming the later numbers. In order to have

a convenient way of referring to this order let us agree
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that whenever we are given any whole number x, the number

which comes next after x will be called the successor of x,

and will be denoted S(x) for short. Thus S(0) = 1,

gl) = 2, S(2) = 3, etc.

Now then, after the numbers 0, 1, ..., 9 comes another

sit-of whole numberseach of whi6h w 11 be named by a pair

of the arabic numerals, written one after the other. The

right numeral of this pair may be any of the ten numerals

whatever; the left one may be any numeral except 0. Such

a pair we will call a two-digit numeral.

Now in order to describe which two-digit numeral will

denote which whole number, we have to specify (a) which

two-digit numeral comes first, i.e., which one denotes S(9),

the next whole number after 9, and (b) a rule which tells

us how, given any two-digit numeral xy which denotes a

whole number, we obtain the two-digit numeral which de-

notes successor of that number. This we do as follows:

Rule for using the two-digit numerals.

(a) 5(9) is denoted by the two-digit numeral 10;

(b) Given any two-digit numeral xy, the successor of

the whole number denoted by xy is denoted by x S(y) if y is

not 9 (case 1), or by S(x) 0 if y is 9 and x is not 9

(case 2). In case both x and y lre 9, then the successor

of the number denoted by xy is not denoted by any two-digit

-numeral, but is the first of a series of numbers which are

denoted by three-digit numerals.
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It is probably worthwhile for the reader to elaborate

the ideas used in the preceding paragraphs to give a pre-

cise mathematical, description of the scheme for using three-

digit numerals as names for certain whole numbers which

follow those denoted by the two-digit numerals. He will

-then -see how, -in-- principle, one could describe -the-- scheme

for using numerals composed of any fixed rmber of digits.

-However, a single description of the scheme covering the

use of numerals containing an arbitrary number of digits

requires the use of a somewhat sophisticated principle

called mathematical induction, which we shall describe in

a later chapter.

As we have seen, the process of counting, in order to

obtain the number n(A) which indicates how many elements

are in a given set A, involves a fixed ordering of the

whole numbers and the attachment of these numbers, in order,

to the elements of the set A. The process of attaching

numbers to elements may be touching-while-reciting, or it

could consist of making tags on which the numerals (i.e.,

the names of the numbers) are written and then tying these

tags to the elements of A, or it could consist in writing

names of the elements of A in a list opposite the names of

the numbers, or it could be by still other methods. From

the mathematical point of view it makes no difference which

_method of attaching numbers to the elements of A _is_employed.

The only thing that matters is to know which number is attached

to which object, not how the attachment is brought about.
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In order to deal with the question of attachin3 numbers

to objects in a neutral way which can represent any possible

manner of causing the attachment, the mathematician has in-

vented the notion of a function. A function can be thought

of as an abstract device for indicating which number is at-
.."

tached to which object in a-giveri-set:If the function'is

denoted by the letter "f" and if "b" denotes some element

of the set A, then we use the notation "f(b)" to indicate

the number attached to the element b by the function f.

For example, if we wish to count the elements of the

set (Moscow, Eiffel Tower), we could do so by means of the

function f such that

f (Moscow) = 1 and

f (Eiffel Tower) = 2.

We get the same function f whether we paint the numerals

"1" and "2" somewhere on the city and the tower, or whether

we write the numerals on balloons and float them over the

city and the tower -- just so long as it is the "1" which

is attached to the city and the "2" to the tower. Another

way to count the elements cf the same set would be by means

of the function g such that

g (Moscow) = 2 and

g (Eiffel Tower) = 1.

Using the function f, the last element to get counted is

the Eiffel Tower; using the function g, the last element

to get counted is the city of Moscow. Either way, the
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number which is attached to the last element is 2. Hence

n((Moscow, Eiffel Tower)) = 2.

For the particular set just considered it is easy to

see that the specified functions f and g give the only

possible orders in which the elements of the set can be

counted, and of course in both cases the same number gets

attached to the last element to be counted. But will a

similar result be true in counting the elements of any set

whatever ?. Suppose, for example, we had a very large set,

say B, and that one way of counting its elements ended by

attaching a certain whole number x to the last element to

be counted, while a different order of counting the ele-

ments of B ended with a number y, differeLt from x, being

attached to the last element to be counted. Then what

would n(B) be? Would we have n(B) = x or n(B) = y? Would

the phrase "the number of elements in B" have any sense at

all?

The fact is that this situation cannot occur. The

whole concept of "the number of elements in the set B" is

based on the supposition that there is a unique number,

n(B), which will be arrived at by any two correct ways of

counting the elements of B. But how do we know that no

matter what set B we start with, any two methods of count-

ing its elements will end up by attaching the same number

to the last counted element? As children, we come to be-

lieve this fact after trying out the counting process on
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a few sets and then developing an intuitive conviction

that the same result will come about for other sets which

we have not tried to count. As mathematicians, however,

we may not be satisfied to base the whole theory of count-

ing on such an intuitive guess: We may seek somehow to

prove the result that any two methods of counting the ele-

ments of a given set must give the same result. Such a

proof can be carried out in a branch of mathematics known

as theory of sets, but we shall not do so lhere.

Can every set be counted? Or are there sets which in

some sense have too many elements to be counted? The set

W of all whole numbers is an example of a set which we say

is infinite, or has infinitely many elements: There is no

whale number n(W) which tells how many elements are in W.

The way we see this is in noting that when we line up

all the whole numbers, say in their natural ord'r, there

is no last one. (As noted previously, every whole number

has a successor.) But the whole process of counting the

elements of a set depends on arriving at a last element

and seeing what number is attached to it. If there is no

last element, then the process of counting does not termin-

ate and so does not give a result.

We may conclude from the above discussion that an in-

finite set is one whose elements can be lined up in such c.

jail, that there is no last one. However, there is one ex-

ception to this rule. What about a set which has no elements:
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Can there be such a set?

We have, indeed, encountered empty sets in item 3 of

§2 above. Mathematicians find it convenient for many

reasons to deal with a set having no elements so they

invent one! As indicated in §2 the empty set is often de-

noted .by the symbol ne. Of course we cannot line up-the

elements of 0 so as to obtain a last one; yet we do not

wish to call 0 an infinite set. We say that the number of

elements in 0 is 0, and write

n(0) = 0.

This is why, when we begin counting the elements of a set

which is not empty, we begin with the number 1. The nuza-

bers 1, 2, 3, ... are sometimes called the counting numbers.

Mathematicians also call them positive integers.

§5 (Track B)

1. Exercise. The set W of all whole numbers is an

example of an infinite set. Give an example of a different

infinite set, all Of whose elements are whole numbers.

Also give an example of an infinite set having some elements

. which are not whole numbers, and an example of an infinite

set none of whose elements is a whole number. In each case

justify the statement that the set in question is infinite.

2. Exercise. A set which is not infinite is called

finite. Let G be the set whose elements are all finite
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sets of whole numbers. Is G finite or infinite? Justify

your answer.

3. Exercise. Recall that if x is any whole number,

then S(x) is its successor, the next whole number after x

in the natural (counting) order. Now, suppose that x and

y are whole numbers such that

S(S(S(x))) = S(S(y)).

Do we necessarily have y = S(x) ? Justify your answer.

4. Exercise. In a later chapter we shall study the

operation of additior, + . Using your intuitive knowledge

of this operation, determine in each case below a number y

which satisfies the indicated condition.

(a) S(S(y)) = 6

(b) S(4+2) = 4 + S(y)

(c) 3 + 2 = S(S(S(y)))

(d) y + 4 = S(S(S(S(S(k)))))

(e) 5 + y = S(S(S(2)))

A number y which satisfies an equation (i.e., makes the

equation true), is called a solution of the equation. The

set of all solutions to a given equation is called the sol-

ution set of the equation. Make up an equation similar to

those above whose solution set is empty.
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5. Exercise. (a) Employ the Rule for using the

two-digit numerals, given in §4, to determine the second

two-digit numeral and the fourth two-digit numeral, ex-

plaining how you obtained these by the rule.

(b) Define what the three-digit numerals are,

--and make -upa--Rule tnumerals ,--follow

ing the general pattern used in §4 for two-digit numerals

and modifying that pattern as seems appropriate. (Hint:

What is the first three-digit numeral, i.e., the three-

digit numeral which denotes the successor of the number

denoted by the last two-digit numeral? Then describe how,

given an arbitrary three-digit numeral, we obtain the next

one; this description will involve enumerating several cases.)

6, Exercise. Suppose a child has three checkers

which we shall call a, b, and c. If he counts them by

touching them in the order b, c, a as he calls out "one,

two, three" he is atI,J.,zhing the number 3 to a, 1 to b,

and 2 to c. Mathematically speaking we say that he is em-

ploying the counting function f such that

f(a) = 3, f(b) = 1, and f(c) = 2.

We could also describe f by giving a table of values for

it, as follows:

a 3

b 1

c 2
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(i) Give equations describing the counting function g

employed when counting the checkers in the order c, a, b.

(ii) How many different counting functions are there

altogether for the set of checkers (a, b, c)? Make a table

showing the values for all of these counting_functdons,-

(iii) How many counting functions are there for a set

of 5 marbles?

(iv) Try to generalize the results of (ii) and (iii)

above by finding a rule which tells how to compute the

number of counting functions for a set of n objects, where

nmay be any whole number whatever.

7. Exercise. Think of the numerals 0, 1, ..., 9 as an

alphabet, and the numerals 0, 1, ..., 20 as words of one and

two letters made up from this alphabet. Arrange these words

in "alphabetical order".

Imagine all numerals (with any number of places) ar-

ranged in this "alphabetical order". Given any numeral n,

let S
a(n) be the next numeral after n in this order. What

is the first numeral n after o such that ni Sa (p) for

every numeral p?
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Chapter 2. Successor and order

§1 (Track A)

In the previous chapter we considered the set W of all

whole numbers, 0, 1, 2, ..., and we discussed the way in

which these numbers are used to indicate how many elements

are in a given set A. The number of elements in the set,

n(A), is determined by a process of counting, and we men-

tioned certain mathematical concepts which underlie the

counting process, namely, the standard ordering of the

whole numbers based upon the fact that each of these num-

bers has a successor, and the method of attaching numbers

to the elements of a set as embodied in the concept of a

function.

In the elementary schools it is customary to follow

the study of counting by intrcaucing the operation of addi-

tion, and we shall adopt a similar course here. However,

before proceeding to study addition we wish to examine in

more detail those mathematical concepts we have found to

underlie the counting process.

Let us start with the notion of successor. We have

agreed that if x is any element of W, that is, any whole

number, then it has a successor, which is the next number

following x in the natural order. We denote the successor

of x by the notation S(x). Now what about the symbol S

itself -- does it have a separate meaning? The mathemati-

cian considers that this symbol is the name of an operation:
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S is an abstract operation which can act on any whole num-

ber, that is, on any element of W, and the result of this

action is another element of W. For example, when the

operation S acts on the number 14 it produces 15, and we

express this by writing S(14) = 15. Similarly, S(1039)

= 1040. We say that S is the successor operation.

Of course the word "operation" is familiar to us from

elementary-school mathematics, for we speak about the opera-

tion of addition, or the operation of multiplication. In

contrast to the successor operation, these operations act

on pairs of numbers, instead of on single numbers. For

example, when the operation of addition, +, acts on a pair

of numbers (x,y), we denote the resulting number by the

notation x + y; in particular we have 2 + 35 = 37, which

indicates that when the operation + acts on the pair (2,35),

the number which results is 37.

We distinguish operations like S from operations like

+ and by saying that the former is a one-place operation

on W, while the latter are two-place operations on W.

Clearly we can expect one-place operations to be

simpler things to study than two-place operations. Since

the operation S plays such a basic role in the system of

whole numbers, it is surprising, therefore, that it is not

given a name and studied explicitly in the elementary

school. Let us investigate its mathematical properties.

First of all, because we have a numeration scheme
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which provides a name for every one of the infinitely many

whole numbers and which tells us how to find the name of

the successor of any given number, we can write down infin-

itely many true sentences about S, such as

S(0) = 1, S(28) = 29, S(1,386) = 1,387, etc.

These are examples of particular statements involving the

successor operation, S, for each statement involves two

particular specified numbers. Particular statements of

this kind are often summarized in a table, as follows:

x S(x

0 I 1

28 29

1,386 1,387

Such a table is called a table of values of the operation S.

There are other particular statements about S which

are true, besides those which are summarized in the_table.

One of these, for example, is

(a) S(S(3)) = 5.

It is useful for us to notice that this fact can be in-
t

(erred, by a process of logical deduction, from the fol-

lowing two statements (which do express entries from the

table of values for S):

(b) S(3) = 4, and

fit-) S(k) = 5.

How would we carry out such a deduction, or proof?
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First, starting from statement (b), we would conclude

(d) S(S(3)) = s(4),

by the logical meaning of the symbol = . The point is that

statement (b) assures us that 8(3) and 4 are the same num-

ber; hence if we perform any operation on S(3) we of course

__get the same result as of we perform that operation on 4.

In particular, S(S(3)) is the same thing as s(4), which is

the content of (d).

The next stage of the proof is to combine equations

(d) and (c) to get the desired result (a). This step is

again justified by the logical meaning of the symbol =

for (d) tells us that S(S(3)) is the same number as S(4),

(c) tells us that S(4) is the same number as 5, and so of

course S(S(3)) is the same as 5 -- which is the content of (c).

The whole deduction described above would normally be

summarized in the following form.

Theorem. From the hypotheses S(3) = 4 and S(4) = 5,

we may infer S(S(3)) = 5.

Proof.

(1) S(3) = 4 ; hypothesis.

_ (2) S(S(3)) = S(4) ; logic of = .

(3) S(4) = 5 ; hypothesis.

(4) S(S(3)) = 5 ; by logic of = from lines (2),(3).

Statements of the form S(S(1)) = S(2) are called equa-

tions; they assert that a number formed in one way (in this.1
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s(o) , o, 5(1) , 0, s(2) , 0, ... .

Another important general property of the successor

operation is the fact that whenever it operates on two dif-

ferent numbers it gives two different results. We express

this by writing:

Proposition 2. For any whole numbers x,y such that

x y we 111F1.11211j4 S(Y).

Mathematicians have a name for this property of S:

We say that the operation S is one-one (read none-to-one").

Another way of writing the same idea is this: If x,y are

--any whole numbers such that S(x) = S(y), we have also x = y.

Other general statements about the successor function

are: For all x in W, x / S(x); for all x in W,

x S(S(x)); etc.

§3 (Track B)

1. The identity operation. Let us introduce another

operation, even simpler than 50 of whole numbers: the one-

place operation of Identity, which is written I. It is the

n
nothing-happens

SI

operation, because when I operates on any

particular whole number the result is simply that same whole

number itself. For example, I(0) = 0, I(1) = 1, 1(49) = 49.

2. Exercise. (a) Make a table of values for the oper-

tion I, showing values of I for three or four numbers. Also,

give a few examples of particular statements which are true

of the identity operation, I, and involve the diversity
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symbol, 1 . Finally, give several true particular state-

ments which involve repeated use of the operation I.

(b) From the hypotheses 1(99) = 99 and the logic of

equality, deduce the particular statement IMI(99))) = 99.

(c) Express the following general statement about the

operation I using letters as variables: When I operates on

any whole number, the result is that same whole number.

(d) Use variables to express the true general state-

ment that the operation I is one-one. (Hint: refer to the

text's discussion of the one-one property of the operation S.

See Proposition 2, §2.)

(e) Use the diversity symbol, ye , to express two gen-

eral statements involving the operation I.

(f) Consider the statement: If x is any whole num-

ber, then I(x) S(x). Is this a particular statement or

a general statement? Is it true or false? Justify your

answers.

3.- Exercise. Using propositions 1 and 2 of §2, prove

the general statement: If x is any whole number then

S(S(x)) S(0).

4. Classroom discussion. Have the class review orally

all that they know about the operation S, calling specific

attention to the meaning of the-new terminology involved

with S, such as "operation", none-place", none-one"_ etc.

5. Classroom discussion. Consider the two equivaient

Forms of Proposition 2, §2. With a minimum of logical
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terminology discuss the intuitive basis for considering these

two sentences equivalent.

Proposition 2 expresses the fact that the whole number 0
is not the successor of any whole number. Actually, 0 is the

only, whole number with this property. One way to express th_s

-----fact, usingvariables, Is as follows: If y is any element of
W such that S(x) y for every whole number x, then y = 0.

Students should find an equivalent way of expressing the idea,

beginning: If y is any element of W which is different from
0, then ... .

4 (Track C)

1. The phrase "successor of a whole number" can be in-

troduced successfully in the earliest grades as a synonyn for
"the next whole number". One way to generate interest in and
get practice with the successor operation would be to picture

S as a kind of machine, such as pictured here.

174,,__hopper

f chute
S I

A whole number, say 4, is put into the hopper and out of the

chute at the bottom comes its successor, 5. Let the children

run the machine -- that is, have a child go to the blackboard
where the machine is pictured and have him ask others for num-
bers to put into the hopper. He then tells what number comes
out of the chute.

Later the procedure can be altered so that the children
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are asked to give the number that went into the hopper after

being told the number that appeared at the chute. For ex-

ample, given that 6 appears at the chute, what number went

into the hopper? (In this case 5). Notice, however, that

with this ,machine 0 could not .appear at the chute, whereas-

Am whole-number-can go into the "hopper.

-After playing with this-machine for a while the

-can be introduced to the idea of a table of values for

*successor machine". By setting down the results of "obser-

vation" in a systematic manner:

t in came out

3 4

3 9
2 3

are led to a method of recording_ findings which will lay-

the groundwork for later work with addition and multiplica-

'on-tables:

After working with single machines for a while, children

can experiment with hooking machines together, so that the out-

-put of one is fed directly into another.

The children should make a table of values for this double-_

machine, feeding into its hopper each of the. numbers 0, ..., 9.7

This should be compared with the table of values of a single
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S-machine with the same input. What relationship is observed

between the output columns of the two tables? Can the child-

ren explain this?

§5 (Track A)

-So far we-have-dealt-with-the-successor-function only-as

an abstract operation on whole numbers. However, we know that

these numbers are applied to counting the elements of a given

set. It is natural to inquire what the relation of the opera-

tion S is to the counting process. It turns out that there is

a simple answer. Namely, if x is the number of elements in a

set A, then 5(x) is the number of elements of any set obtained

from A by putting in one new element. Let us introduce some

mathematical notation for referring to such a set.

Suppose, then, that A is any set, and suppose that b is

any object which is not an element of A. Let us first form the

set (b) having b as its only element, and then let us put to-

gether the elements of the two sets A and (b) to form one big

set; we call this the union of A and (b), and use the notation

A u(b) to denote it. Thus A u(b) is the set formed from A by

adding the object b as a new element. Now, how many elements

are there in this new set, Au (b)? As we have indicated above,.

it is pretty obvious that the number of elements in A u (b) is

the next number after n(A), i.e., we have n(Au(b)) = S(n(A)).

Let us formulate this observation as a proposition for

later reference.



Page 2.11,

Proposition 1. If A is any set and b is any object which

is not an element of A, then n(Au(b)) = S(n(A)).

For example, if A = (Cairo, Jerusalem) and b = Suez Canal,

then n(A) = 2, S(n(A)) = S(2) = 3, n(AQ(b1) = n((Cairo, Jeru-

salem, Suez Canal)) = 3.

Al- though- the -result-expressed in- Propos itiam-t-ta-Intu-

itively very clear, it is worthwhile to explain it in terms of

the counting process which underlies the determination of

n(Av(b)). If we count the elements of the set Ao(b), we may

first count those elements which are in A. If n(A) = x,

the number x will be:attached to the last element of A to be

counted. At that point there will remain one uncounted ele-

ment of Au(b), namely, the object b. The rules of counting

prescribe that the number attached to this element must be the

next number after the number x just used. This next number

is, of course, S(x), which thus gets attached to b. Since b

is the last element of Au(b) to be counted, this gives the

desired result, n(Ao(b)) = S(x).

§ 6 (Track B)

1. Union of sets. The two-place operation on sets called

union was introduced in §5 as a method for taking any two

given sets and forming a new one from them by combining all

their elements into one big set. For example, if

A = (1, 5, 14, 16) and B = (T, 6, 5, 1, 16) we get immediately

that the union, AuB, is the set (1, 5, 14, 16, F, 6, 5, 1, 16) .
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Of courEe, repeating the name of an element, such as 1 or 5 in
this case, does not in any way change the fact that 5 is an ele-

ment of A u B in exactly the same way as 7 is an element of this

set. Similarly, in listing the elements of a set the order in

which the list is presented is immaterial (as we see by the prin-

-gleofexterresionality) .Wence we can also write A u B

= (1, 5, 6, 7, 16, 14).
2. Exercise. a) Why is the operation union called a

two-place operation on sets?

b) Let C = (3, 6, 4, 16), B = (18, Moscow, 6, 3),
G = (16, 6), and F = X.

(1) List the elements of the sets C u B, C u G,

F u G, B o G.

(ii) Determine n(C), n(B), n(G), n(F), n(C t..) B),

n(C u G), n(F u E) and n(B u E).

(iii) notice that n(F .0 G) = n(F) + n(G). Is this

relation true in general, that is for any sets

F and G? justification?

c) If E = (0, 2, 4, 6, 8, ... ) and D = the set of all

odd whole numbers,

(1) What is E u D?

(ii) Notice that EuD=Do E. Is this true for

other sets E and D?

d) Let A be any sets. How are the sets A u A and

t.; id related to A?

e) Let A be any set. We know that if b is any object
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which is not an element of A, then Au(b) is the set obtained

from A by adding b as a new element, and n(Au(b)) = S(n(A)).

But suppose, now, that b is an element of A. How is the set

Av(b) related to A in this case? And how is n(Au(b)) related to

n(A) in this case?

3. Discussion.. Discuss the meaning of some of the nota-

tion introduced in this chapter. For example, which of the

expressions "S(n(A))" and "n(S(A))" is meaningful -- where "A"

denotes a set -- and what is its meaning? If "x" denotes a

whole number, is "n(S(x))" meaningful? What about "n((S(x)))"?

4. Counting functions. Recall that the mathematical no-

tion of a function may be used to indicate which number is

attached to each element of a given set A in the process of

counting the elements of A. The numbers which get attached to

the various elements of A in the counting process are the num-

bers 1, 2, ..., n(A); the last number, n(A), which is attached

to an element of A in the counting process, tells us how many

elements the set A has. A function f which attaches the num-

bers 1, 2, n(A) to the elements of A in a one-to-one

manner is called a counting function. Mathematicians also

study different functions which may attach objects other than

numbers to the elements of a given set A, or which may attach

the same number to several different elements of A.

5. Exercise. Let A = (0, 2) and B = (0, 2, 5). There

are just two counting functions for A, namely, the function f

such that f(0) = 1 and f(2) = 2, and the function g such that
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g(0) = 2 and g(2) = 1. How many counting functions are there

for B?

6. Exercise. Suppose A is any (finite) set, b is not an

element of 4 and C = A; (b) Let x be the number of counting

functions for A, and let y be the number of counting functions

for C. Can you find a simple eauation connecting the numbers

x, y, and n(C)?

7. Let A,= (0, 2, 4, 6) and B = the set of all whole

numbers less than 12.

a) Find a set C such that Atj C= B. How many different

sets C of this kind are there? How many of these are dis-

joint from A?

b) Find a set D such that AvD-= How many different

sets D of this kind are there? How many are disjoint from A?

§ 7 (Track A)

Let us now turn to the concept of order for the set W of

all whole numbers. We have seen that all of the elements of

W can be produced by starting with 0 and successively applying

the operation S. Of any two distinct whole numbers, say x and

y, one will be produced before the other by this process. If

x, say, is produced before y, we say that x is less than y, or

x is smaller than y, and we write x < y. For example, we have

2 < 14, 23 < 678, but not 3 < 0.

The fact-that of any twtr-distinct whole numbers one must

be less than the other, can be formulated as a general statement:
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For all whole numbers x and y such that x / y, we must have

either x < y or y < x.

An eauivalent formulation is the following:

For any x, y in W, either x = y or x < y or y < x.

This statement is known as the Trichotomy law for < . The

word law is used simply for any true, general statement.

Sometimes the trichotomy law is expressed in a stronger

form, as follows:

Trichotomy law for For any x, y in W, either x = y or

x < y or y <x -- and no, two of these three conditions can

hold simultaneously.

Another important fact about the ordering relation, less

than ( < ) , is the

Transitive law for < : If x, y, z are any elements of W

such that x < v and y < z then we must also have x < z.

The truth of this can be seen from the meaning. of <. For if

x < y and y < z, this means that in generating all whole num-

bers from 0 by successive applications of S, the number x

comes before y and y comes before z. But then of course x is

produced before z, which means x < z as asserted in the trans-

itive law.

There are still other laws which connect the successor

operation, S, with the ordering relation, <. For example, if

x is any whole number then x < S(x). Loin: If x, y are any

elements of W such that x < then also S(x) < s( v). Con-

versely, whenever S(x) < S(y) we have also x < y.



e"-- .

)

Page 2.16
,

Suppose that A and B are sets such that n(A) < n(B). Then

we say that A has fewer elements than B. Thus the relation <

between whole numbers provides a way of comparing the size of

two given sets -- providing, of course, those sets are finite,

so that the number of elements in each can be expressed by a

whole number.

From the relation less than, <, and the relation of equal-

,ity, = , we can define a new relation which is often quite

useful in mathematics.

Definition of . If x, y are any whole numbers we say41
that x < y (read x is less-than-or-equal-to y), if either

x < y or x = y.

For example, 3 < 5 and 3 < 3, but not 3 < 2.

The new relation also obeys a transitive law. Let us

formulate this as a theorem.

Theorem. Using the transitive law for < as a hypothesis,

we can obtain as a conclusion the transitive law for <: If

x, 4 are any elements of W such that x < y and y < z, then

also x < z.

To prove this, we begin by assuming that x, y, z are any

whole numbers such that x < y and y < z. By definition of <2

this means that either x < y or x = y, and also that either

y < z or y = z. Thus we get 4 possible cases for cur assumptions:

Case 1. x < y and y < z.

Case 2. x < y and y = z.

Case 3. x = y and y < z.

Case 4. x = y and y = z.
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We have to prove that in every one of these 4 cases we must

have X < z. That is, we must show that in each of these 4

cases we have either x < z or x = z. As a matter of fact, it

turns out that in case 1, 2, and 3 we have x < z, while in

case 4 we have x = z. The indicated conclusion for case 1 is

immediate from the transitive law for <, and that for case 4

1-8immediate -by- thelogic of =

Actually, cases 2 and 3 can also be handled by the logic

of =. Consider, for example, case 2, where our assumptions are

that x < y and y = z. This means that x is produced before y

when the whole numbers are generated from 0 by successive ap-

plications of S, and that y is the same number as z. But then

of course x is produced before z, which means x < z as claimed

in case 2. (See item 1, § 9.)

Other laws which hold for < are as follows:

(i) For any xly in W we have x < y or y < x.

(ii) If x,y are any elements of W for which we have both

x < y and y < x, then we must have x = y.

The relation < has a natural significance in connection

with the counting process. To explain this, we must first de-

fine what it means for one set A to be a subset of another set B.

Definition. A set A is said to be a subset of another set,

B, in case every element of A is also an element of B. To in-

dicate that A is a subset of B we use the notation A c B.

Example: We have (London, Paris) chAParis, Milan, London)

and

(2, 3, Moscow) (2, 3, Moscow),
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but not

(2, London) a (3, London, Paris).

Now a fundamental connection between the relation < and

the counting process can be described as follows:

i are no elements of B left after those of A have been counted,

Proposition. Whenever A and B are (finite) sets such

that A c. B, then we must have n(A) < n(B).

To see this, suppose that A Q. B. Imagine that we count

the elements of B, starting by first counting all of the ele-

ments which are in A before proceeding to any elements of B

which are not in A. In this process, the number attached to

the last element of A to be counted will be, of course, the

number n(A), since every element of A is in B by our supposi-

tion A c B. If there remain elements in B not yet counted,

this means that n(A) comes before n(B) in the counting pro-

cess so we have n(A) < n(B). If, on the other hand, there

then the last element of A to be counted will also be the last

of B and so we have n(a) = n(B). In either of these cases we

have n(A) < n(B), by the definition of . (See § 9, Exercise 6.)

__________§_8__ (Track A)

In closing this chapter, let us draw attention to the many

general statements (or laws) which we have cited. Why is the

mathematician so interested in general statements? Actually,

there are several reasons.
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First of all, the discovery and communication of such laws

provides mathematicians with a kind of esthetic satisfaction.

Most people are not generally aware of this aspect of mathe-

matical work. Hmever, to discover that something is true of

all elements of an infinite set, such as W, gives us insight

into a kind of regularity among the elements of the set which

c

is not unrelated to the element of form in a work of art.

General statements are also obviously economical ways of

codifying many separate, independent, particular facts which

would otherwise have to be registered separately.

A very important use for general statements is in connec-

tion with the deductive method for organizing our knowledge,

which often leads us to discover new, particular facts about

the domain under investigation. For instance, starting with

a few general laws which we may know, or which we may assume

as axioms, and using a few particular facts which may be known

to us, or may be given as hypotheses, we can often combine

these by the laws of logic into a proof whose conclusion may

be some new fact, previously unknown, or not perceived as re-

lated to the given facts.

Finally, in the domain of whole numbers we shall see that

the general laws a2e decisive in providing justification for

the algorithms by means of which we all learn to carry out

computations in elementary arithmetic.
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9 (Track B)

1. The logic of = . The reader who fills in the missing

steps for the proof of the transitive law for the relation <

may notice that a transitive law for = is involved. He may

well wonder why this was not explicitly listed as a hypothesis

This was not done since those laws dealing only with the rela-

tion = are considered parts of logic, an elementary working

knowledge of which we are assuming the reader possesses.

2. Two special subsets. Let B be any set. Then we have

both B f.:B and 16 c B; in other words, every set is a subset of

itself, and the empty set is a subset of every set". The first

of these is easy to see from the definition of c= , since .of

course every element of B is an element of B. To see the sec-

ond statement, iS c B, suppose that some set A is not a subset

of B, i.e., that some element of A is not an element of B.

Thus if we had not jif c. B this would mean that some element of
IMMEINo

pf is not in B -- an impossibility, since gf has no elements

whatever. Since it is impossible to have not 0 c B, we must

have 0 C. B as claimed.

3. Exercise. a) Let A = (1, 2, 3). Keep in mind item

2, above, and find all possible subsets of A. How many are there?

b) If B is any set such that n(B) = 4, how many subsets

does B have altogether?

c) If C is a set with n(C) = x, where x is some whole

number, generalize (b) above by finding how many subsets C has.

(Exrress your answer by a formula involving the letter "x".)
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4. Other ordering relations on W. Besides the relations

< and < there are two other closely related relations which are

used by mathematicians: > (greater-than), and > (greater-than-

or-equal-to). The definitions are as follows:

Definition. For any whole numbers x.y we define x > y to

mean that y < x, and we define

x > y to mean that y I x.

The reader can easily see that laws for > and > hold which

are similar to 'those holding for < and < respectively.

5. Exercise. Prove the following law connecting the re-

lations > and <:

For any x,y in W we have x > y if, and only if, it is not

the case that y < x.

6. Exercise. Find a general law involving the operation.

S and the relation < , and illustrate it with a couple of par-

ticular examples.

7. EXercise. It was stated in Section T that if A and B

are any sets such that A S:B then n(A) < n(B). Consider the

converse. statement: If A and B are any sets such that

n(A) < n(B), then A B. Is this general statement true or

false? Explain why.

8. Exercise. In §7 we gave an argument to support the

proposition that whenever we have AQB we also have n(A) < n(B).

Give a similar argument to support the following proposition:

If A,B are any sets such that n(A) < n(B), then there is a sub-

set C of B such that n(C) = n(A). How would yru find such a

set C?
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9. Exercise. Justifying your answer, indicate whether or

not the set relation cz.. satisfies:

i) a transitive law

ii) a trichotomy law.

10. Classroom discussion. Discuss exercise 9 above. The

discussion, may touch on examples of other relations obeying (-le

__or both of these laws, on some general notions about order rela-

tions, or about still more general relations.

11. Exercise. Below there is stated the hypothesis and

conclusion of a theorem, together with a sketch of a proof.

Supply the missing parts of steps (3), (k) and (6), and the

missing parts of the justifications for steps (2), (4), (5)

and (7). Justifications may include references to theorems or

propositions given in the text.

Theorem. Hypotheses: (i) A and B are sets with x = n(A)

and y = n(B) ,

(ii) c is not an element of A, and d is not an

element of B,

(iii) Au (c) = B u (d).

Conclusion: x = y.

Proof: (1) x = n(A), y = n(B) ; . hypothesis (i)

(2) c is not an element of A,

and d is not an element of B;

(3) = B t) (d); hypothesis (iii)

(4) n(A u (c )) = S(x) and

n(B0 (d)) = from steps (1) and (2),

by

1
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n(A o(c)) = n(Bu (d)) ; by logic of =

from step

(6) by logic of = from

steps (4) and (5).

from step (6)___s_ince_the

operation S is

according to a proposition

in § 1.

§ 10 (Track A)

Mathematicians like to illustrate the ideas of their

theories with geometric diagrams of one sort or another,

and the theory of the number systems is no exception. One

of the simplest ways to picture the whole numbers is by

means of a "number line". This device has recently become

quite common in elementary mathematics classes.

It will be recalled that the geometric concept-of a

straight line is such that a line is considered to extend

indefinitely in opposite directions, so that it has no ends.

Of course when we draw a picture of a line we only repre-

sent a part of it, since in practice we must place our pen-

cil down on a first point of the drawing and remove it from

a last point. Examples:
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Technically, such a part of a straight line is called a

line segment.

Actually, for purposes of picturing the whole numbers

we do not require a whole line, but only a half line (Also

called a ray). Customarily we draw this horizontally, pro-

ceeding to the right of our starting point, thus:

We place the arrow head at the right end of our drawing to

indicate that we wish to consider the unending half line

which continues indefinitely to the right. Sometimes,

however, we shall find it convenient to draw a number line

pointing in some other direction, such as upward.

Now we indicate certain points on our half line by

means of small circles, large dots, or little cross marks.

The left end-point of the ray is one of these marked points,

and we label it with the numeral O. We then choose some

other point of the ray to the right of the end point, and

label it 1. We often refer to the points bearing these

labels as "the point 0" and "the point 1". The distance

between these two points is called the unit distance of the

number line.

Now, starting at the point 1, we lay off to the right

of it the unit distance, arriving at new point which we

label 2. Then the same distance is laid off to the right

of 2 to reach a new point, labeled 3. Of course on a given

picture we can generally fit only a few points. However,
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since the ray proceeds indefinitely to the right, we can

imagine that every whole number is assigned as a label to

some point of the ray. The ray, together with the special

labeled points, is called the whole number line. A picture

would look like this:

0 1 2 3 4 5 6 7

With the aid of such a whole number line we can picture

the operation S and the relation < in various ways. For

instance one way to picture the operation S is to draw

little curved arrows above the line, starting from each

numbered point x and finishing at 5(x). This would look

as follows:

--""'

3

These curved arrows suggest a motion of the line, in

which the line moves one unit distance to the right. We

can illustrate this motion by drawing the number line in

its initial position, and then under it we draw the line

in the position it would occupy at the end of this motion,

as follows:

0 1 2

From such a double diagram we can read off the successor of
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a number on the lower line simply by looking at the number

right above it on the upper line.

As for picturing the ordering relation, <, this is most

simply done by noticing that whenever x and y are numbers

such that x < y, then the point labeled x is to the left of

the point labeled y.

We would like to emphasize that there is no unique way

to picture a mathematical concept. For example, both the

successor operation S and the ordering relation < can be

pictured in ways quite different from those indicated above

by means of the notion of graphs, which we now proceed to

explain.

As the framework for a graph we construct two number

lines, starting from the same point, at right angles to each

other. It is customary to draw one of these horizontally to

the right and the other vertically upward, as follows:

2

0 1 3

These two number lines are called the coordinate axes of

the graph.

Now let us imagine all of the vertical lines which pass

through the labeled points of the horizontal axis, and all

of thi-horizontal lines which pass through the labeled points

-of the vertical axis. The points where these vertical lines

I
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intersect these horizontal lines are called the lattice

points of the graph. They are pictured as follows:

2

1

0 1 2 3 4

Notice that the labelea points on the axes are themselves

_among the lattice points.

Now with any lattice point there is associated an or-

dered pair of whole numbers, (x,y). We get the first num-

ber, x, by following down the vertical line through the lat-

tice point and seeing which labeled point on the horizontal

axis lies at its foot. (The horizontal axis is sometimes

called the X-axis.) And we get the second number, y, by

looking across the horizontal line through the lattice point

and seeing which labeled point on the vertical axis lies at

its left end. (The vertical axis i$ sometimes called the

Y-axis.) The numbers x,y associated in this way with a

given lattice point are called the coordinates of the point,

and are often written near the point on a picture as a kind ,

of label for that point. We often speak of the point which

is labeled with the number pair (x,y) as "the point (x,y)".

Pictured below are the points (4,0) and (2,3).
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X-axis

It is easy to see that not only does every lattice point have

a pair of coordinates, (x,y), but that conversely, given any

pair (x,y) of whole numbers, we can always find a lattice

point having.those numbers as its coordinates.

Now let us consider the equation y = S(x). If we con-

sider any ordered pair of whole numbers, such as (2,3) or

(2,4), we can substitute the numbers of the pair for the

letters of the equation, always following the rule that the

first number of the ordered pair is substituted for the let-

ter "x ", and the second number is substituted for the letter

171. The result of such a substitution is a particular state-

ment about the successor operation which may be true or false.

For example, substituting (2,3) we get the true statement

3 = S(2), while substituting (2,4) gives the false statement

4 = S(2). An ordered pair of whole numbers is said to satisfy

the equation if the substitution results in a true statement.

Now the graph of the equation y = 3(x) is simply the

totality of lattice points whose coordinates satisfy the

equation. Thue the graph consists of all the infinitely many

lattice points (0,1), (1,2), (2,3), (3,4), . Of course

we only picture a few of these.
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It is evident that all of these points lie on one straight

line, and we often join them by a pictured line.

1 3

In the same way we can picture a graph for the equation

x = S(y). Remembering our rule of substituting the first

number of an ordered pair for "x", the second for "y", we

see that (3,2) will satisfy this equation, but (2,3) will

not. Here is a picture of the graph of x = S(y):
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We can also draw graphs for an inequation, such as x < y.

We see that (2,4) satisfies this inequation because the sub-

stitution of "2" for "x and "4" for "y" yields a true state-

ment, but (4,3) and (2,2) do not satisfy it. Here is a pic-

ture of a portion of the graph of x < y.

2

1

4

We see that the graph of x < y consists of the graph of

y = 3(x) together with all lattice points lying above the

latter. This relationship between the graphs gives us a

visual image corresponding to the relationship between the

operation S and the relation < .

11 (Track B)

1. Graphs on a number line. In §10 we introduced

vaphs of equations such as y = S(x), and inequations such as

x < y, involving two letters(or variables, as they are

called). Even simpler equations and inequations, involving

only a single variable, also can be represented pictorially.

Whereas the graph of an equation with two variables is a set

of po:Lnts in a plane, the graph of an equation involving one

variable is a set of points on a single number line.
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For example, consider the equation 2 = S(x). There is only

one whole number whiCh satisfies this equation and that is 1.

Hence the graph of 2 = S(x) is represented by a single point.

0 1 2 3

We generally picture such a graph by making a heavy dot at

points of the graph, or by circling these points.

2. Exercise. (a) On a whole number line graph the

equation x = S(2). (This means, draw a picture of the graph

of the equation.

(b) Graph the inequation x < 4.

(c) Graph the inequality x S(2). (Circle the points

of the graph, using two "circles".)

(d) Explain the connection between the Trichotomy law

for the relation < and the fact that the graph in (c) falls

naturally into two parts.

3. Exercise. Using coordinate axes, graph the follow-

ing equation which uses the identity operation: y = 1(x).

(See item 1, O.)

4. Exercise. Using a single, set of coordinate axes,

graph the equations (a) y = S(x)

(b) y = S(S(x))

(c) y = S(S(S(x)))

What is the relation of these graphs to the graph of x < y ?
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5. Classroom discussion. The relation "to the left of"

on the number line is a pictorial representation of the rela-

tion < on the set W of all whole numbers. However, if we look

at the lattice pointa_aatcrmined-by-a pair of coordinate axes,

they do not appear-to--be "lined-up" in any natural way. Bu.

_ let us try to "1-ineup"; these points.

At the boardr draw- -a. of coordinate axes and lat-

tice points, and .have--several_students try to describe one or

more orderings of the lattice-points. This means describing

a rule which tells when...a. point (x,y) comes "before" some

other point (u,v). To satisfy-the trichotomy law, we must be

sure that for any two distinct - Lattice points, one of them

comes before the '..ther. In other words, if we use the nota-

tion (x,y) << (u,v) to indicate that the point (x,y) comes

before the_point-(u,v), we must .be sure that whenever

(x,y) (u,v) we have either (x,2y) << (u,v) or (u,v) << (x,y),

but not both. The ordering may be described with the help of

pointing, but the rule defining << must cover all the infin-

itely many lattice points,. not just the ones pictured on the

board.

Discuss in what*ways.the-ordering << of lattice points

resembles the- -ordering .< of-points on the whole number line,

e.g., the transitive law,..Discuss in what ways the twc order-

ing relations may differ, e.g., is there more than one lattice

-point which .lacks all immediate_ predecessor with respect to

the ordering << ? (If can -we define some other orderings
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of the lattice points in which there is exact- y one such point,

or in which there are none?)

After an ordering << has been defined "pictorially",

i.e., with the help of pointing, an attempt can be made to

give a mathematical description in terms of the number pairs

(ra)--which-are used as label.§-for-therittice points.

Among the natural orderings likely to be devised are the

-lexicographical orderings of the number pairs induced by the

relations < and > on W. (See Ex.7,Chapls 95.) If these

have not been found by the students, the instructor should

define the lexicographical ordering << induced by < and then

ask for a pictorial account of the relation << in terms of

vertical lines on the coordinate plane. Afterward, raise the

question of horizontal lines.

6. Exercise In each of (a), (b), (c) below there are

given the coordinates of three lattice points (x,y) which lie

on one straight line. in each case plot the points and con-

nect them with a straight line. Then try to find an equation

involving the letters ":x.' and "y" which is satisfied by the

coordinates of all three of the given points. Finally, find

a fourth point whose coordinates satisfy the equation you

found, and determine whether or not this point lies on the

straight line passing through the other three points.

(3,6)

(6,2)

(3,1)

(a) (0,0), (1,2),

(b) (3.1), (0,0;,

(c) (0,4), (2,2),
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7. Exercise. In each of (a), (b), (c) below there are
given the coordinates of two lattice points (which of course

determine a straight line). Find the coordinates of two more
lattice points on each of these lines.

(a) (0,0), (3,2)

(b) (0,0), (2,3)

(c) (0,1), (4,5)

8. Exercise. Consider a geometric plane (without any

coordinate axes specified). If we mark off any two points in

this plane they can be connected by a straight line segment
-"i.e., a piece of a straight line whose ends are at the given
points). If we have three points marked in the plane which
do not all lie on one straight line, and if we wish to connect

each marked point to both of the others, we need three seg-
ments. If we have four marked points in the plane, no three
of them on a single straight line, then six segments are needed

to connect each marked point to all of the others. (Make a

drawing to show this.)

Collecting the above information in a table, we have:

No. of oints No. of connecting segments

2 1

3 3

4 6

Now suppose that n is any. whole number. Try to find a formula,

which may involve the letter "n" and symbols for any of the

arithmetical operations, which gives the number of segments
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needed to connect each of n marked points to all of the others

(assuming no three of the marked points lie in one straight

line). Check your formula with a drawing for the case n = 5.

9. Exercise. Read the dialogue in item 2 of §12 below.

Then write a dialogue to illustrate the type of game described

in item 3 of §12.

10. Exercise. Write out an explanation of how, when we

are given a pair of coordinate axes and two whole numbers x,

_y, we can find the point labeled (x,y) on a graph.

§12 (Track C)

1. Importance of Introducing the Whole Number Line.

The whole number line is very useful at the primary level for

. illustrating the whole numbers as an ordered set arranged in

increasing order from left to right, if the line is oriented

in the normal horizontal position, or from bottom to top if

given the normal vertical orientation. It should be introduced

as soon as the names for the whole numbers have been learned

since it can represent pictorially concepts which are murk

more diffivilt to introduce verbally. For example, on the

number line it is immediately evident that for any two dis-

tinct whole numbers, one of them must be less than the other

(Trichotomy law). Similarly the transitive property of the

relation < can be easily understood visually.

2. Games using the Whole Number line. Example.

A number line is drawn on the chalk-board.



Page 2.36

Teacher: I'm thinking of a numbtIr between 0 and 10. I'll

call it x , Can you guess which number x is?

Child: Is It 9?

T: No, x is less than 9. (Writes x < 9 on board.)

C: Is it 1?

T: x is more than 1, (Writes x > 1.

C: Is it 10?

T: No, because x 3 -6 tnan 9. (Points to "x < 9" on

board.) If the child still does-Irt understand, have

him go to the board and show on the number line which

numbers ar, less than 10.

C: Is it 5?

T: No, x is less than 5. (Writes x < 5.)

C: Is it 2?

T: No, x is more than 2, (Writes x > 2.)

C: Is it 3?

T: Yes, and since you guessed it, it's your turn to be the

teacher and well try to guess what number you're

thinking of, (Since young children can forget with ease,

it would help to have hip write the number on a slip

of paper.)

After the game the ' ;eacher could point to the written

statements x 9 and x < 5 . The former can be crossed

out and the teacher oan alk why the information in that state-

ment is no longer needed, once x < 5 has been written down.

One can vary the game in many ways. An objective to work
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towards is having the children not try to guess the number,

but instead to ask questions that would narrow in on the

hidden number. One way to do this would involve only answer-

ing yes-or-no type questions, and perhaps imposing some limit

on the number of questions that could be asked. As childre-

--become more sophisticated they might be asked-to-try to deter-

mine if there is some minimum number of questions that would

guarantee them getting the hidden number.

3. Guess1 415 games in the plane. Guessing games of the

above sort are also useful with reference to a pair of coordin-

ate axes. Here of course the aim is to guess the coordinates

of a point, Hence answers to questions would involve the

relation (larger or smaller) of each coordii,ate of the guessed

print to the corresponding coordinate of the hidden point.

4. Drawing graphs in elementary school. Plotting points

on a coordinate axis system requires practice for children.

One way to make it more interesting would be to have them plot

points and connect them to make some kind of closed figure

such as a triangle, square or other figure. As they achieve

proficiency at this: they can be asked to make their own sim-

ple figure3 on graph paper, and then to make up a table of

coordinates of the vertices of their figure. Each student

can then :_xchange these tables of coordinates with his neigh-

bor, who would then try to reconstruct the original figures.

In this connection we should call attention to "geo-

boards". These are commercially available, but can also be
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made easily by youngsters -- and even, in some cases, by

teachers! A geo-board is a board into which upright nails

have been hammered so as to form a rectangular array.

T T T T

T T L
T T T-

These boards are used with rubber bands. Such a band can be

stretched between two nails to form a line segment, or it can

be stretched around several nails to form a triangle or other

polygon -- convex or other.

At a later stage these can be used to illustrate many

mathematical ideas, for instance those connected with area.

However, they can be used very early for practice in describ-

ing an array of points by means of coordinates.

5. Using a coordinate system drawn on the chalkboard,

draw a line segment connecting the point (0,0) to any other

lattice point (see below). Ask the students to find the

coordinates of another point on this line. Then see if they

can find something in common about the coordinate-pairs of

all the labeled points on the line. Have them guess what

the coordinates at the next lattice point would be if the

segment is extended. Similarly, start with the segment join-

ing (1,2) with (3,4) and ask for other points on the line, and

for something which all coordinate-pairs on that line have in

common.
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Chapter 3. Addition.

§1 (Track A)

In the preceding chapter we have examined two aspects of

the whole number system which are basic to the use of these

numbers in counting: -the-successor operation, -Si-and-the or-

dering relations < and < . In the present chapter we shall

study the two-place operation of addition, + , on the set W

of all whole numbers.

This operation is usually introduced in the elementary

schools in terms of the counting process. In order to add

two given whole numbers x,y a child is instructed to begin

by taking two sets A and B, the number of elements in these

sets being x and y respectively. (Very often the elements

of A and of B are the child's own fingers.) He then combines

the elements of these two sets into one large set -- mathe-

matically speaking, he forms the union Au B of the two chosen

sets -- and counts the number of its elements. The resulting

number, n(AuB), is defined to be the sum x + y of the two

given numbers.

Basically, this is a perfectly satisfactory way of ob-

taining a mathematical definition of addition, providing we

take care of two details. The first of these is that we must

make sure that the two chosen sets, A and B, are disjoint,

i.e., that they have no common elements. Ordinarily this

point is not mentl.oned explicitly in the elementary school,
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or at'any rate is not stressed, since the teacher can rely on

the particular sets A and B turning out to be disjoint just

from the way in which they are chosen -- e.g., A may consist

of fingers from the left hand, B of fingers from the right

hand, and so of course the two sets will have no common ele-
..,

ments. It 1-s intuitively clear, however, -that-if-theTets A

and B have several common elements then the combined set, AUB,
will have fewer than x + y elements in it.

How does:the mathematician symbolize the fact that two

sets, A and B, have no common elements? In the first place,

given any sets A and B whatever, there is a notation for the

set of all their common elements: Ar1B. This set, consist-

ing of all those objects which are in both A and B, is called

the intersection of A and B. Now, to say that two given sets

have no common elements is simply to say that their intersec-

tion is emety. Recalling our symbol X for the empty set,

we see that to express the fact that A and B are disjoint we

can write: AnB = le .

We have observed above that if n(A) = x and n(B) = y,

then the condition ArIB = X must be satisfied if we are to

have n(AuB) = x + y. But there is a second point we must

consider in connection with the elementary-school way of in-

troducing addition, before we can base a precise mathematical

definition upon it. This second point is somewhat more subtle,

so let us examine it in detail.

Starting with given numbers x,y of the set W, a child
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chooses disjoint sets A and B so that the number of elements

in A is x (i.e., so that n(A) = x ), and so that n(B) = y .

The child then forms the union, AUB, counts the number of

elements n(AU B), and is told that this number is x + y .

Of course another child in the class, when the same numbers

-x-and y-are-given,-- will -generally not choose the same sets -A

and B as the first child -- especially if each child is taught

to make up the chosen sets using his own fingers as elements!

So the second child chooses a different pair of disjoint sets,

say C and D, with n(C) = x and n(D) = y ; he then forms the

union of his sets, Cu D, counts its elements getting n(C uD),

and is told that this number is the required sum, x + y .

But how do we know that the number of elements in C u D is

the same as the number in the set AuB which the first ;hild

is counting? True, A has the same number of elements as C --

this number being x . And B has the same number as D --

this being the number y . So we expect that A uB will

turn out to have the same number of elements as CUD . But

wt.& do we expect this outcome? And is an expectation the

same thing as mathematically certain knowledge? One thing is

clear -- if we ever had a case where n(A UB) turned out to

be different from n( C u D) , i. e . , where n(A OB) / n( C u D) ,

then it wouldn't make sense to call both of these numbers

x + y . Thus, from the mathematical viewpoint this method

--of-defining addition depends upon a prior knowledge that in

fact we will have n(AUB) = n(Cv D) in every case.
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Let us formulate the desired result as a theorem.

Theorem. Let x and y be any whole numbers. Let

A, B, C, D be any sets such that: (i) n(A) = x and

n(C) = x (ii) n(B) = y and n(D) = y , and (iii) A B = fd

and- Cn D = Itr . Then we must have nrAuB) = n(C oD)

In elementary school we come to believe this result on

the basis of experience. That is, we try it out using several

choices for x, A, B, C, and D, and we find that in each

case we get n(A u B) = n(C u D) -- or at any rate, if we don't,

the teacher tells us we must have made a mistake!

However, a mathematician is never satisfied to establish

a statement about all numbers x and y, or about all sets

A, B, C, and D, just by trying a few cases. He wants to know

whether it is possible to prove that the desired result will

be obtained in every case.

Of course every proof must start with some facts, or

principles, which are used in the proof. A proof of the

above theorem can be given, based upon the principle of math-

ematical induction. (We have mentioned this principle in

Chapter 2, but without formulating it explicitly; we shall

defer a formulation until the end of the present chapter, §9E)

Once the theorem is established, we are justified in formu-

---lating the following definition of addition.
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First Definition of Addition on W. We define + to be

the two-place operation on W such that, given any numbers x,y

of W, the number x 4 y (called the sum of x and y ) is

obtained by first choosing any disjoint sets A, B such that

n(A) = x and n(B) = y , and then letting x + y be the

number n( A u B) .

This definition is justified by the preceding theorem.

The reader may be surprised to see the word "First" in

the title of our definition above. Can we have more than one

definition for a given concept? Do we need more than one?

The answer is that when a mathematician is developing a

particular mathematical theory he needs only one definition

for any particular concept he wishes to introduce. Similarly,

he needs only one proof for any particular theorem he wishes

to establish. However, in general he has a choice of more

than one definition, or more than one proof, which he .can

use at each stage. It is important for a mathematics teacher

to realize that there is almost never a unique way to solve

a given mathematical problem or attain a given mathematical

goal. One of the most widespread faults in elementary mathe-

matics teaching is the insistence that all students do a given

type of problem in a rigidly prescribed manner. This stifles

the processes of exploration and discovery, and the creative

activity of developing original ways of doing things, which

provides much of the excitement of mathematics. Of course,
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to encourage such creativity a teacher must know how to rec-

ognize a mathematically satisfactory answer to a given prob-

lem even when it is different from the solution worked out

in the teacher's edition of the textbook. To help develop

such an ability we shall often exhibit more than one possible

way Of defining a given concept, or more than one way of

proving a given result, in these notes.

Our first definition of addition was based on the use

of the whole numbers in counting the elements of certain sets.

Let us give another definition now in terms of the successor

operation. The reader may recall that multiplication is

often introduced as "repeated addition" in elementary school;

we will examine this in the next chapter. The point we want

to make at this time is that addition also can be introduced

as the repeated use of some other operation -- namely, of

the successor operation, S .

Second Definition of Addition on W. We define + to be

the two-place operation on W such that, given any numbers

x,y of W, the number x + y (called the sum of x and y)

is obtained by applying the operation S successively y

number of times to the number x . In symbols:

x + y = S(....S(S(x))....)

y applications of

In case y = 0 we apply S no times, so that x + 0 = x.

S.
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For example, to compute 2 + 3 by this definition, we

would compute S(S(S(2))) = SO(3)) , since S(2) = 3

= S(4) , since S(3) = 4

= 5

To compute 2 + 3 by the First Definition we would first

-choose sets -A and B (George Washingtorri Abraham

Lincoln) and B = (Paris, London, Bangkok), such that

n(A) = 2 and n(B) = 3 and An B = itc . We would then form

AuB , namely,

(George Washington, Abraham Lincoln, Paris, London,

Bangkok), and finally we would count the number of elements

in this set, n(AUB) , getting the same answer 5 as we got

above when we used the Second Definition. The fact that our

two definitions of + will give the same answer for every,

pair of whole numbers x,y is something a mathematician

would wish to prove, but we shall simply take it for granted

in our present treatment of the subject.

Using either definition of + , we can establish a great

many particular statements about this operation such as the

fact that 2 + 3 = 5 , which was derived above. For example,

we get such facts as 0 + 2 = 2 , 8 + 1 = 9 , 4 + 4 = 8 ,

etc. Often we collect together facts of this kind into a

table of values of + , or an addition table. For example,

a table giving all sums x + y for x,y = 0, 1, 2, 3 would

_look like this:



+ 11 0 I 1 1 2 1 3

0 11 0 [ 11 3

1 1 1 i 2 3 4

2 1 2 1 3 1 4 5

3 I I 3 1 011 5 1 6
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-To-find 3 + 1--in-this-ta.bIe" tide locate 3 in the left mar-

gin, 1 at the top mark;' , and find the entry which is across

from the 3 and under the 1 , namely, the circled 4.

So 3 + 1 = 4 .

In the elementary schools it is customary to memorize

the facts contained in a table of this kind. For example,

one often memorizes the value of all sums x + y where x,y

are any of the numbers 0, 1, ..., 9. However, no one can

write or memorize the values of x+ y for all whole numbers

x,y because there are infinitely many of them. What we do

in practice is to use the (memorized) table of sums of one-

digit numbers, together with a certain procedure (or algo-

rithm, as it Is called). Both of these together enable us to

compute the surf of any given two whole numbers. One of the

principal thrusts of recent elementary mathematics curriculum

revisions has been to get across to students an understanding

of why these algorithms lead to a correct computation of sums

in every case. We shall see that from the theoretical point

of view such an understanding depends critically on the general

statements which are true about the operation of addition.

Let us, therefore, turn our attention to some of these.
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2 (Track B)

1. Class Discussion. According to the First Definition

of addition on W , finding the sum of two whole numbers

x and y first requires the choosing of two disjoint sets

A and B such that n(A) = x and n(B) = y . If x and y

are small enough this choice is easy, for ones own fingers

will do very welr.-- However, what-if- x -and- y- are very large?-

How can we construct sets large enough for .ddition of any

whole numbers x and y ?

2. Exercise. (a) Find two sets S and T such that

n(SuT) = n(S) + n(T) .

(b) Find two sets W and V such that

n(WkA) < n(W) + n(V) .

(c) Can one find sets Wand IT such that

n(W) + n(V) < n(W0V)? Explain.

(d) Let A = (1, 2, 3) . Make a list of all sets B

such that An B = B . (There are 8 of them.) That do they

all have in common?

(e) Letting A = (1, 2, 3) as in part (d), how many

sets B are there such that ArIB = A ?

(f) What property is common to all those sets B in

part (e)?

3.. Exercise. The theorem which justifies the First

Definition of addition states that if A, B, C, D are any sets

such that (i) n(A) = n(C), (ii) n(B) = n(D),

(1-1-1)- A nB = AS, and (iv) C n D = X, then we must have
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(v) n(AuB) = n(Cd D). However, it is possible to have sets

A, B, C, D which satisfy (v) even though (i), (ii), (iii),

and (iv) are not all true. Find sets A, B, C, D such that

n(AuB) = n(CuD) and AnB = je, CrID = X, but n(A) n(C)

(and also n(A) n(D) ). Is such an example possible if

n(B) = n(D) ? Why?

4. Exercise. Compute 0 + 4, first using one of the

definitions of addition given in §l then using the other def-

inition.

5. Project to be written up and subsequently_discussed.

Find a child around five or six years of age who is familiar

with the names of at least the first five or six whole numbers.

At this age most children have sk.-1:-z ideas concerning very

simple sums, such as "two plus two." Using as light a.touch

as possible, try to discover just what these ideas are. You

will have to be understanding and skillful, for children this

young are not always very verbal and are put off quite easily.

Make an attempt at figuring out how your subject determines

different sums. Do the two definitions of addition given in

the text play any part in the child's conception of adding

numbers? Write up your observations and comments and discuss

them in class.

6. Class Discussion. In §1 two definitions are given

for the operation of addition. Why do we not say that these

two definitions define two distinct operations? Discuss a

way in which one might see, intuitively, that the computation
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y by the Second Definition will give the same result

as by the First Definition, no matter what whole numbers x

and y we have.

Suggestion: Starting with disjoint sets A and B having

x number of elements and y number of elements respectively,

we form Au B -(aecording to-the First Definition) by combin-

ing the elements of A and B into one big set. Now suppose

we carry out this combining process by carrying the elements

of B one at a time over to A, thus enlarging A through

a series of intermediate sets until AuB is achieved. If

we keep track of the number of elements in these intermediate

sets, do we see any connection with our Second Definition of

addition:

§3 (Track C)

1. Introducing Addition. One of the requisites for

finding the sum of two whole numbers x and y, according to

the First Definition of Addition, is finding two disjoint sets

A and B with n(A) = x and n(B) = y. The manner by which

these two sets are chosen and counted is mathematically unim-

portant, but children should be brought to realize the import-

ance of the fact that it doesn't matter which sets are selec-

ted -- a fact which was formulated as a theorem in §1.

In order to facilitate the discovery of this fact, how-

ever, when the subject of addition is first introduced, it is

pedagogically desirable to have some standard objects which
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the children can easily use as elements of sets. For example,

it would be useful to have a box of green counters marked

from one to thirty, and another box of red ones marked simi-

larly. By taking the sets A and B in the definition of ad-

dition to be sets of green and of red counters, respectively,

and then forming a new set (the union), children can get their

first practice in counting unions.

The teacher should realize, however, that there are dif-

ferent ways of counting the union of two sets of marked count-

ers, and that by asking skillful questions the children can

be led to discover various facts about this process and thus

led to make the process more efficient.

For example, consider first the problem of obtaining x

green counters, x being a number given by the teacher. The

children can at first be asked to take x counters when these

are placed blank side up (no numerals showing). Under these

conditions the counting process must be carried through, of

course. Afterward the same type of task can be set when the

numerals marked upon the counters are showing. By asking (if

necessary) whether the numerals can be of help, the students

should be led (after experimentation) to realize that in order

to secure x counters they need only take those counters

marked 1, 2, x -- without actually counting. The game

can then be made more difficult by removing the counter marked

with 12 say, or those marked with 1 and 2.

After the process of selecting a given number of colored
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markers has been improved, as -above, atttlitim-mbDuld be

turned to the process of counting a set consisting of x

green counters and y red ones. If the green and red count-

ers are mixed before the counting begins, then all the elements

of the set must be counted. However, the teacher should then

suggest that all the green counters in the set be counted

first, before any of the red ones. The children will soon

realize that there is no use in' counting the green ones, for

the answer will always be x -- the given number. Hence,

when asked to count the u .on they may begin the counting pro-

cess by touching the first red one and calling out x + 1,

touching the second and calling out x + 2, and so on until

the last red one is counted when the desired number, x + y,

will be called out.

A further level of sophistication can be reached by taking

x and y to be very unequal numbers, and asking the children

to count the union in two ways -- first counting all the green

counters before the reds, and then in the opposite order.

They will presently be led to observe that it is easier if

one takes the larger number first, since the counting pro-

cess (as indicated in the previous paragraph) need only in-

volve touching the elements of the second set.

In proper sequence the teacher can thus guide the child-

ren to successive levels of sophistication by using a series

of directed questions, asking such questions as "Which set

should we count first?" or "Does it matter which set we begin
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_with?" or "What about the numerals painted on the counters;

can we use them to help us count the sets A and B ?" In

other words possible (and sometimes impossible) points of

departure from a previously used procedure are called into

focus for discussion and implementation (or rejection).

§14 (Track A)

The commutative law for + : For any x,y in W we

have x + y y + x.

This is so familiar and intuitively clear to most of us

that some students have difficulty in seeing that the state-

ment really expresses anything at all! Perhaps the way to

begin is to notice that there are some two-place operations

which do not obey a commutative law. Subtraction and expon-

entiation are examples -- while we will study these in later

lectures, the reader has encountered them in elementary math-

ematics courses and knows that there are numbers xly_ such

that x - y y - x, or such that x5r yx. Thus, the fact

that addition and multiplication obey commutative laws sets

these operations apart from others like subtraction and ex-

ponentiation.

The evident truth of the commutative law for + is

seen clearly from our first definition of addition. For in

order to compare x + y and y + x, where x and y arc anj

giyen whole numbers, that definition requires us first to

choose disjoint sets, say C and E, such that n(C) = x
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and n(E) = y. Then by the first definition of + we have

x + y = n(Cu E) and y + x = (E uC). But Cu E is the same

set as E C, for in either case we form the set by combin-

ing the elements of C and of E into one big set. Since

CO E = E uC, of course we get n(Cu E) = n(Eu C) by the

logic of =, that is, x + y = y + x.

It is worth noting, however, that the truth of the com-

mutative law for + is not equally self-evident if we use

our second definition of addition. Being given two whole

numbers x and y, in order to show that x + y = y + x

according to that definition, we would have to show that ap-

plying S successively y number of times to x, brings us

to the same result as applying S successively x number of

times to y. While we could check that this indeed turns out

to be the case in individual instances by choosing a few spe-

cial values of x and y, some further argument would be

needed to prove the result in full generality. (Such an ar-

gument can be provided by using the principle of mathematical

induction, $59.)

The associative law for + . For all x,y,z in W we

have (x + y) + z = x + (y + z) .

Students often have difficulty in seeing the meaning of

this law because they have been taught to add a column of

three numbers in elementary school. Actually, the possibilit;
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of adding together a column of more than two numbers, and get-

ting the same result no matter whether we add from top to bot-

tom or vice-versa, rests upon the associative law. It is im-

-portant to realize-that addition as originally defined is a

two-place operation -- using either one of our definitions

of A-4 Hence at first we can only add two numbers at a time.

It follows that if someone gives us three numbers in a certain

order, say x,y,z, the only way we can add them all is to

apply the two-place operation + twice. But when the numbers

x,y, are given in this specific order there are two differ-

ent ways of applying addition twice: One way is to form the

sum x + y and then add this number to z getting

(x + y) + z; and the other way is to lirst form the sum

.jr + z, and then add x to this numbe7, getting x + (y + z).

ltill.the numbers resulting from these two different ways of

applying + twice. namely, the numbers (x + y) + z and

x + (y + z), turn out to be the same -- no matter which num-
,

bers x,y,z we start with? The associative law gives an

affirmative answer to this question.

The truth of the associative law for + can best be seen

from our first definition of +, though it is not as easy to

see as in the case of the commutative law. Being given any

three whole numbers x,y,z, we first choose three sets

A, B, C such that n(A) = x, n(B) = y, and n(C) = z --

makinti sure that no two of the sets A, B, C have an element

in common.
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Under these conditions we will have, by our definit :_on

of +, that x + y = n(Au B) . Then, because of the wa:- in

which A, B; and C were chosen, and because A u B is 2b-
tairied simply by combining the elements of A and B ii .;o one

big set, -we see that the two sets A uB and C will nave no

element in common. Hence we can apply our definition of +

a second time and conclude that (x + y) + z = n( (Au El u C) .

Since the set (A u Biu C I s formed by combining the elements

of A u B and of ., ill to one blg set, we see that 1 1-1 fact

(Au B) u C is obtained by combiiiing all of the elem. :its of

the three sets A, B, and C into one big set.

By entirely similar arguments we can see firs : that

y + z = n(B u C) and then that x -1- (y + z) = n(i. u (Bu C)) -

Furthermore, A u (Bt.) C) turns out also to be the set obtained

by combining all or the elements of the three seJ,s A, h, and

C into on big set. In c'5her words, we find ou; that

(Au 13)u C is the same set as (Au (B u C) . Obviously, then,

n( (AO 23) u C) is the same number as n(A u (B kajC 1: ) , i e. 5

x + Cy + z) --- (x -:- :-) -;- z.

The truth of the associai.ive law can alsc be established
using the seccnd l Thefii7ion of +1 but as in the case of the

commutative law a very different kind of arghment is needed.

(For a proof of t::,: associative law from car.ain axioms, see

§7 below.)

The following two laws involve not only the operation of
D addition, but also the special elements 0 and 1 of W, andw
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the successor operation S.

Law of the additive identity element. For every x in

W we have x + 0 = x and 0 + x = x.

We express this fact by saying that 0 is an identity

element for the operation +.

Law of addition and successor. For every x in W we

have 5(x) = x + 1.

This simply expresses the fact that the addition of 1 to

any whole number brings us to the next number in the natural

ordering of W.

The preceding two laws, as well as the commutative and

associative laws above, all have in common a certain simple

. Namely, each law is expressed by means of a single

equation, involving one co' more variables, preceded by a phrase

such as "For every," or "For all.' A law having this form is

called an equational identity. There are, however, laws of

a more complicated form, such as the following.

Cancellation law for +. If x,y,z are any whole numbers

such that x + z = y + zy then also x = y.

The name of this law derives from the fact that the sec-

ond equation appearing in it may be obtained from the first

equation by "cancelling" an occurrence of the letter "z" from

both sides. Of course there is no general logical principle
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which allows such cancellation for an 11.bitrary operation;

the truth of the lam for addition rest- upon the definition

of this particular operation.

The cancellation law for + car be expressed in the fol-

lowing logically equivalent form: I: x,y,z are any whole

numbers such that x Cy, then also x + z g + z. In this

form the cancellation law can be sem to be related to the

following law connecting the opera ion + with the relation .

The law of addition over ine.uality: If x,y,z are any

whole numbers such that x < y, then also x+ z < y + z.

A similar law connects + pith <.

Still another law connect; 1g addition with the relation

is the following: For any_ hole numbers x and y we have

x <y if, and only if, there is some whole number z such

that x + z = y. It is wortl. noting that this law is used as

a definition of the relation <' in some treatments of the

theory of whole numbers, where the operation + is introduced

before a study of the relat.ens and <. In such a pre-

sentation of the subject w may follow this definition of <

by defining x <6y to ho) I if, and only if, x and y are

whole numbers for which w : have x < y and x y.

We have now examine 1 several laws (i.e., general state-

ments) involving addition, and we wish to turn to the use of

some of these laws in establishing particular statements
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about addition. Another way of expressing what we are going

to do is to say that we shall use our laws of addition to

compute certain sums -- starting from other sums.

To take a very simple example, consider the following

partially filled-out addition table:

+ 0 1 2 3

0 0 1 2 3

1 3 4

2 4 5

3 6

Using only the information contained in the completed part of

the table, together with the commutative law of addition, we

can obtain all of the information needed to complete the

table -- without ever having to al back to 2 definition of

We illustrate this by the following theorem, in which the

first hypothesis is taken from one of the completed entries

of the table above, while the conclusion gives the information

needed to provide one of the omitted entries.

Theorem. Using the hypotheses

(i) 1 + 2 = 3, and

(ii) the commutative law for +,

we may obtain the conclusion

2 + 1 = 3.



The prod is exceedingly simple.

+ 2 ; by logic frcdm hypothesis (ii).

3 ; by hypothesis (1).

3 ; by lines 1 and 2 and the logic of =.

In explanation )f the_first line of the proof, we recall that

1. 2 + 1 = .

2. 1 + 2 =

3. 2 + 1 =
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hypothesis W., the commutative law for +, asserts that

x + y = y + x for any whole numbers x and y. Hence in

particular we may take x to be 2 and y to be 1, get-

ting 2 + 1 s 1 + 2 as asserted.

The usf of the associative law to obtain certain sums

from others requires us to use proofs of somewhat more inter-

est. Cons .der, for example, the following partially-completed

table of .aPaes of the addition operation:

+, 1 2 3 4 5 6

Taple A

1

2

2

3

4

5

6

7-

4

5

6

7

8

It turns out that the seven entries provided, together with

the associative law for +, allow us to obtain all the miss-

in, entries of the table -- again, without referring to a

d'-finition of + at all. Let us illustrate this by obtain-

lag the sum 4 + 3. The hypotheses (i) below are taken from

:he completed part of the table; the conclusion allows us to

fill in in one of the omitted entries.



Page 3.22

Theorem. Using as hypotheses

(i) The particular statements,

1 + 1 = 2, 2 + 1 = 3, 4 + 1 = 5, 5 + 1 = 6, and

6 + 1 = 7, and

(ii) the associative law for +,

we may infer the conclusion: 4 + 3 = 7 .

Proof.

1. 2 =. 1 + 1 ; by hypothesis (i) and logic of = .

2. 4 + 2 = 4 + (1+1); from line 1 by logic of = .

3. =(4+1) + 1 ; by hypothesis (ii)

4. = 5 + 1 ; by hypothesis (1) and logic of =

5. = 6 ; by hypothesis ( i) and logic of =.

6. 4 + 2 = 6 ; by lines 2-5 and logic of = .

7. 3 = 2 + 1 ; by hypothesis (i) and logic of = .

8. 4 +3 = 4 + (2+1) ; by line 7 an' logic of =

9. = (4+2) + 1 ; by hypothesis (ii)

10. = 6 + 1 ; by line 6 and logic of =

11. = 7 ; by hypothesis (i) and logic of =

12. 4 + 3 = 7 ; by lines 8-11 and logic of = .

After we have studied certain additional laws involving

multiplication as well as addition, we shall see that proofs

similar to the one above, but involving these other laws, com-

prise the justification of the algorithms usually taught in

elementary school for computing sums and products.

addition to the laws we have studied above one some-

times finds in books the following:
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Closure law for + If x,y are any elements of W,

then x + y is also in W.

The property of + expressed by this law is part of

what we mean by saying that + is a two-place operation on W.

There are other sets A, subsets of W, such that for

any numbers x,y in A we have x + y in A. Such a set

is said to be closed under +. The set P of positive whole

numbers, i.e., the set of all whole numbers x such that

x > 0, is an example of a set which is closed under +. The

set of all even whole numbers is another example.

§5 (Track B)

1. Exercise. In (1)-(vi) below particular examples of.

either the commutative law for +, the associative law for +,

or the law of the additive identity element are given. In

each case state which law is being represented and give an

additional particular example of that law.

(1) 3 + 0 = 0 + 3

(ii) (2 + 0) + 0 = 2 + (0 + 0)

(iii) 0 + 0 = 0

(iv) 108 + (2 + 17) = (2 + 17) + 108

(v) (2 + 3) + 0 = 2 + 3

(vi) (2 + 5) + (3 + 0) = 2 + (5 + (3 + 0))

2. Class Discussion. At the end of §4, it was stated

tfiat the set of all even whole numbers is closed under +.

Discuss what is meant by "even whole number", and how the
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senaloal tic of wrap 441.0.10 npmban.- 1:00.11 bo ITeovvibea-math-

ematically. Subsequently 'lave the class present an argument

for the fact that the even whole numbers are closed under +.

Now consider the set of all odd whole numbers in the light of

the above discussion. Is-this-set-closed? -Make up other- -sets.

3. Exercise. If x,y and z are any whole numbers, ex-

plain why x + (y + z) is a whole number. Suppose also that

v is any element of W. Explain why (x + (y + z)) + v is

a whole number. How far can we "extend" the above sums --

that is, how many whole numbers (addends) may we sum together

and still be assured that our result will be a whole number?

Explain.

4. Exercise. Suppose x,y and z are any whole numbers.

What supporting statements are needed to justify each of the

mellowing;, (a) If x=z then x+y=y+ z

(b) If x+y=y+z then x= z

5. Class Discussion. The law of "'the" additive identity

element tells us that 0 is an additive identity element for

W. Discuss the possibility that there is another identity

element, say a, for the set of whole numbers under +. Have

the class collaborate on a proof that in fact, if a is Ara

additive identity element then a = 0; explain why, as a re-

sult, we are justified in talking about "the" (unique) addi-

tive identity element for W.

6. Exercise. Let w, x, y, z be any four whole numbers

in this order. (a) Using this order, in how many distinct
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ways may these numbers be summed? (See the discussion of the

associative law in §4.) w+ (x + y)) + z and

w + (x + (y + z)) are two of these distinct ways. Using the

associative law for + repeatedly, in a step by step manner,

show that these expressions denote the same number.

7. Class Discussion. Suppose r, s, t are any whole

numbers. What are we talking about when we say that the assoc-

iative law for + in W gives meaning to the expression

"r+ s + t" ?

8. Exercise. Closely connected with the two-place

operation of addition, there are infinitely many one-place

operations on W. An example will make this clearer.

Let us denote by S
5

the one-place operation such that;

for any whole number x, when S
5

operates on x the result-

ing whole number is x + 5.* We use the notation "S 5(x)"

because it gives us the same result as applying the one-place

operator S five times -- that is, S5(x) = S(S(S(S(S(x))))).

Let us call S
5

the plus-five operator. Analogously, we can

define a plus-two, plus-three, or plus=y operator (y being

some whole number).

(a) Compute S5(0), S2(4), S0(5).

(b) Formulate a precise definition of the plus-two operator.

(c) Solve the following equations; that is, determine

what whole number x must be in order to make the equations

true: (i) S
5
(x) = 7 (iv) Sx(S2(3) ) = 8

(ii) S3(x) = 4 (v) s2(sx(x)) = 10

(iii) s (2) = 6 (vi) sx(s4(x)) = 16 .

* In owbolg 9 (7.1 -
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9. Exercise. As was mentioned in §4, some texts define

the relation < in terms of addition -- that is, x < y is

defined to hold if, and only if, there is some whole number

z such that x + z = y. The relation < can then be defined

to hold between two whole numbers x and y if, and only if,

both x < y and x y. Starting from the trichotomy law

for the relation <,and using the above connections between

< and <, and between < and +, obtain a general statement

about the operation + .

10. Exercise. In §4 the associative law is used in or-

der to find the sum 4 + 3, an entry in Table A. Review the

procedure involved in computing 4 3 and then using the

same hypotheses show that 1 + 3 = 4.

11. Exercise. Suppose that a, b, c, d, e are five

distinct objects and that F = (a,b,c,d,e). A two-place oper-

ation on F is determir:ed as soon as we have a table indica-

ting which element of F is assigned as the value of the

operation when it acts on any given ordered pair of elements

of F. Below is a partially completed table for a certain

two-place operation 0 on F. Because there are some blank

boxes this table does not, by itself, determine the operation 0.

(a) Write out a statement of the commutative law for

the operation 0. Assuming that this law holds for 0, com-

plete the partially filled table of values for 0 below.

(b) Describe a kind of symmetry which can be observed

in the completed table. Suppose the entries in the table are
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rearranged by putting the elements of F in the order

(a,b,c,d,e), instead of the present order (b,d,e,a,c), in

both top and left margins of the table (and then rearranging

the entries in the body of the table accordingly). Will the

resulting table be symmetric? What if we rearrange the top

margin but not the left margin?

(b) Does there exist an identity element in F with

respect to the operation 0 ? Explain.

(c) Compute the elements (b 0 d) 0 c and b 0(d 0 c)

of F. How would you go about establishing the associative

law for the operation 0 ? How many equations would have to

be verified by computation?

Obdeac
bceabd
d b c d a

e d e b

a a c

c
e

§6 (Track A)

Now let us see what sort of pictures -- or geometric

models,-to use a more mathematical-sounding phrase -- we can

construct to illustrate the concept of addition.

Let us begin with graphs. Consider the equation y = x + 2,

for example. Its graph consists of all points labeled with

ordered pairs of whole numbers (a,b) which satisfy the



Page 3.28
equation y = x + 2 when the first number, a, is substi-

tuted for the letter "x" and the second number, b, is sub-

stituted for the letter "y". For example, the point (1,3)

is on the graph since 3 = 1 + 2 but (3,1) is not on the

graph since 1 3 + 2. In order to find several points on

the graph we often make a table with two columns headed "x"

and "y"; we put several whole numbers in the x-column, and

opposite each of these we put a number in the y-column ob-

tained by computation from the equation y = x + 2.

x y

0 2

1 3

2 4

3 5

Thus the last line of this table tells us that the point

(3,5) is on the graph. Our picture of'the graph, delved

from this table, looks as follows:

Y-axis

5 = x + 2

4

3

2

1

0
1 2

> X-axis
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We see that the points of the graph all seem to lie on one

straight line. We have placed an arrow at the end of the

line joining the points of the graph to remind ourselves that

only a limited portion of the graph is shown in the picture;

the full graph extends indefinitely in the direction of the

arrow.

It is instructive to plot the graphs of several equa-

tions, say y = x + 0, y = x + 1, and y = x + 3, on the

same picture. Here is the result:
= x + 2

Y-axis y = x +1
= x + 0

5

4

3

2

1

1 2 3 it 5

-axis

We see that the lines joining the points of these graphs are

parallel.

Other pictures connected with the operation + can be

obtained by plotting graphs of the equations y + 0 = x,

y + 1 = x, and y + 2 = x.
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Finally, let us plot the graphs of x + y = 0, x + y = 1,

x + y = 2, and x + y = 3. Unlike the preceding graphs, these

will not extend indefinitely. In fact, there is only one pair

of whole numbers which satisfies the equation x + y = 0,

namely, (0,0), so the graph consists of just one point in

this case. Similarly, the equation x + y = 2 is satisfied

by the ordered pairs (0,2), (1,1), and (2,0), and by no

other pair of whole numbers, so the graph contains just three

points in this case.

5

4

3

2

1

__x + y = 3
,,-x + y = 2

x + y = 1

x + y = 0

1 2 3 4 5

Graphs are not the only kind of pictures we ::an assoc-

iate with the operation +. Let us consider the equation

y = 2 + x. We can get a picture for it by drawing a number

line and a series of arrows: An arrow is to start from each

numbered point, and to end at another point whose number is

obtained from the first number by adding it to 2.

0 1 2 3 4 5 6

These arrows suggest a motion of the number line, in which

the line moves 2 units to the right. (We thus get a "motion
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picture" for the equation y = 2 + x!) If we indicate this

motion by drawing the initial position above and the final

position below, the result is as follows:

0 1 2 3 4 5 6 7
firl41111141MIfil111M.pMM1111>

We see that if we choose a number from the lower line and

substitute it for the letter "x" in the equation y = 2 +

the corresponding value of the letter "y" will lie on the

upper line directly above the initial number. Of course, sim-

ilar equations, such as y = 1 + x or y = 5 + x, would

correspond to motions of the number line 1 unit to the right,

or 5 units to the right, respectively.

The geometric ideas we have just considered lead to a

mechanical device known as the slide rule. This consists of

two strips of wood or other material, each imprinted with a

scale of numbers, so arranged that one strip can slide along-

side the other. Slide rules are commercially manufactured

and widely employed, especially by engineers; these slide

rules generally employ logarithmic scales and are used as an

aid in multiplication. However, by employing scales such as

we use on a number line, we can construct a slide rule which

enables us to find sums in a mechanical manner.

We consider a slide rule consisting of fixed and movable

strips of wood placed alongside each other, on each of which

a number line has been imprinted. We will picture the fixed
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strip above, the movable strip below.

0 1 2 3 4

[ I II 11-0 fixed

movable

0 1. 2 3 4 5

Now the use of this device to compute any sum- c + x of given

whole numbers c and x, is as follows:

(i) We move the 0 point on the lower scale until it

is opposite the number c on the upper scale.

(ii) We find the point x on the lower scale and read

off the number y on the upper scale which is opposite it.

This number y is the desired sum c + x.

The fact that we get y = c + x, as claimed in (ii)

above, may be seen from the consideration of the moving num-

ber line which precedes our discussion of the slide rule.

? 11 1

x+c

I

I T I 1 1-
0 C

ST (Track B)

1. Exercise. On one set of coordinate axes, graph the

following equations: (a) x + y =

(b) x + 2 = y

(i) Determine the set A of all lattice points whose

coordinates satisfy equation (a).

(ii) Let B be the set of all lattice points whose
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coordinates satisfy equation (b). Do all of these points

appear on the part of the graph you have pictured? Explain.

(iii) Find Ar03.

(iv) How is the answer to (iii) related to your pic-

ture of the graphs of equations (a) and (b)?

2. Class discussion. A teacher should have practice

in making up "word problems" for presentation to pupils for

the purpose of illustrating mathematical ideas. Ask the class

to find word problems which can be represented by equations

(a) and (b) in Exercise 1 above.

A "classtcal example of such a problem would involve

the ages of children. Example: The ages of John and Jane

now add up to 4, and in two years from now John will be as

old as Jane is now; how old is each child? For another ex-

ample, we may seek to determine the lengths x and y of two

sticks of unknown length, in a situation where we have on

hand sticks of known length 2 and 4.

Discuss the solutions of these problems in terms of

graphs. Find an additional pair of equations whose graphs

intersect, and "fit" a few word problems to these graphs.

3. Exercise. (i) Let p be the horizontal line seg-

ment whose endpoints have coordinates (2,1) and (6,1) --

we shall express this by writing p = [(2,1), (6,1)]. Also,

let q be the horizontal line segment [(3,5), (9,5)].

Draw a pair of coordinate axes and sketch the two segments

Mark the approximate midpoints (on the drawingp and q.
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of these segments) by eye -- without measuring -- and estimate

the coordinates of these midpoints by visual inspection.

(ii) On another graph draw the vertical line segments

[(1,1), (1,3)] and [(2,2), (2,6)]. Assign letters as names

for these segments, and estimate the coordinates of the mid-

points of each of them, again by visual inspection.

(iii) Study the coordinates for the four midpoints sup-

plied in (i) and (ii) above. Can you find a relationship

which holds in each case between the coordinates of the mid-

point and the coordinates of the endpoints?

(iv) Using the relationship found in (iii) above, what

would be the coordinates of the midpoint of the segment

((2,1), (8,3)]? Make a drawing and check your answer.

4. Exercise. The sliding scale of the slide rule below

has been moved into position to compute the sum 3 + 4. Put

in the necessary numerals on both scales to enable us to com-

pute 3 + 4, and circle the numeral represented by this sum

on the slide rule.

- fixed scale

- sliding scale

5. Class discussion. Discuss the feasibility of actually

constructing some sort of a slide rule to be used in an ele-

mentary school -- size, material, details. Consider the pos-

sibility of using a "super slide rule" consisting of three

scales each of which can be moved independently while the other



Page 3.35

two are held fixed relative to each other. Such a super

slide rule can be used to illustrate the associative law of

addition: discuss how this can'be done.

(x + y) + z
0 x x+y x + (y + z)

I

0 y y+z

0

§8 (Track C)

1. A moving game. The following "game" is suggested

as a way to give children more practice with coordinates while

simultaneously enabling them to develop relevant geometric

intuition. The idea is to have them move around a simple fig-

ure, such as a square or a triangle, in a patterned way upon

a system of coordinate axes. For example, the teacher con-

nects four lattice points to form a square, asking the child-

ren to determine the coordinates of its vertices. Next the

children are asked to determine the coordinates of the ver-

tices of the square obtained by "flipping" the given square

over one of its sides, as below. (A cutout cardboard square

of the same size can be placed on the chalkboard and flipped

over to demonstrate what is meant. Of course, the square can

be flipped over about any one of its four sides.

i 1

/4'

1 1
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As the children gain in visualizing geometric motions a

horizontal line can be drawn at some distance from a square,

and the question can be put as to where the square would land

if it were flipped over this line in a kind of mirror-image

projection. The vertices of the given square can be labeled

A, B, C, DJ and then those of the square in the_ne_w_position____

should be labeled A', B', C', D' in such a way that A' shows

the new position, after flipping, of the original vertex A;

and similarly for each vertex. Finally, when coordinates of

the vertices of the original square are given, the coordin-

ates of the vertices of the square in the new position should

be computed.

C

1 1 I

§9 (Track A)

Finally, let us turn our attention to the principle of

mathematical induction which we have mentioned several times

without formulating it explicitly. While its precise formu-

lation will seem rather more complex than the general state-

ments we have considered heretofore, there is really a very

simple idea which lies behind it. In fact, this principle is

nothing more than a precise way of saying that all whole num-

bers are obtained by starting with 0 and applying the
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successor operation, S, over and over again.

Suppose that A is a set whose elements are whole num-

bers, i.e., AS.14. We are going to suppose two things about

A: First, that the number 0 is an element of A, and sec-

ond, that A is closed ,under the operation S. This means

that whenever S is applied to an element of A, the result-

ing number is also in A. Now let us combine these two sup-

positions and see what follows.

Since 0 is in A we can apply S to it obtaining 1;

thus 1 is in A (since A is closed under S). Now, ap-

plying S to 1 we get 2; thus 2 is in A (since A

is closed under S). Now, applying S to 2 we get 3;

thus 3 is in A (since S is closed under S). Continuing

in this way we see intuitively that every whole number is in

A -- since every such number can be reached by successive

applications of the operation S to 0. The fact that this

conclusion can be drawn from our two assumptions about A is

precisely the content of the principle of mathematical induc-

tion. Let us now formulate this explicitly.

Principle of mathematical induction. Let A be any set

of whole numbers such that

(i) 0 is in A and

(ii) Whenever a whole number x is in A then also

Slx) 13 in A.

Then every whole number must be in A.
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This principle can be used to prove a great many facts

about the whole number system. For this reason, when mathe-

maticians treat the number system as an axiomatic theory, they

often include the principle of mathematical induction as one

of the axioms. Most people know that the Greek mathematician

Euclid developed geometry as an axiomatic theory, but the rea-

sons which impelled him to do so are applicable to every

branch of mathematics. It was an Italian mathematician,

Peano, who first set up an axiomatic theory of whole numbers,

around 1890. Nowadays mathematicians treat all parts of math-

ematics from the axiomatic viewpoint.

The desirability of setting up axioms for a theory arises

from the simple recognition that every proof reaches its con-

clusion only after starting from some assumptions. If we go

back and try to prove those assumptions, we must start those

proofs from other assumptions. If we are not to be led by

this process into circular reasoning, we must decide to start

somewhere with propositions which we do not try to prove.

These are the axioms of our system. Of course there is nothing

intrinsically umprovable about these axioms: One can always

find a new set of axioms and use them to prove the proposi-

tions taken as axioms in the first system.

Among the axioms used by Peano were the principle of

mathematical induction, and the following two general state-

ments connecting + with 0 and with S respectively.
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Axiom 1. For every x in W we have

x + 0 = x.

Axiom 2. For every x, y in W we have

x + S(y) = S(x + y).

Let us see how the associative law for + can be obtained as

a theorem in this system.

Theorem. Let us assume Aiioms 1, 2 and the principle of

mathematical induction. Then for all x, yl.z in W we have

(x + y) + z x + (y + z).

Proof.

1. Let x, y be any whole numbers.

2. Having chosen x and y, let us form the set A of

all those whole numbers z (if any) for which it is

true that (x + y) + z = x + (y + 2).

3. We claim that 0 is in this set A. For

(x + y) + 0 = x + y, by Axiom 1.

And x + (y + 0) = x + y, because y + 0 = y by

Axiom 1. Combining these two equations we get

(x + y) + 0 = x + (y + 0), which means that 0 is

in A by definition of A (Step 2, above).

4. Now suppose that we choose any number z from our

set A. We claim that we must also have S(z) in

A. To see this, let us compute.
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(a) (x + y) + z = x + (y + z), since z was chosen

from A (Step 4), using the definition of A

(Step 2).

(b) S((x + y) + z) = S(x +(y + z)), by logic from (a).

(c) S((x + y) + z) = (x + y) + S(z), by Axiom 2.

- (The x of Axiom 2 is taken to be x + y, and

the y of Axiom 2 is taken to be z.)

(d) (x + y) + S(z) = S(x + (y + z)), by logic, (b ), and (c),

(e) S(x + (y + 4) = x+ S(y + z). By Axiom 2.

(f) (x + y) + S(z) = x + S(y + z). By logic, (d) and (e).

(g) S(y + z) = y + S(z). By Axiom 2.

(h) x + S(y + z) = x + (y + S(z)) . By logic and (g).

(1) (x + y) + 8(z) = x + (y + S(z)). By logic,(f), and (h).

(j) S(z) is in the set A. By (i) and the definition

of A (Step 2).

5. Every whole number is in the set A. For 0 is in A

(Step 3), and whenever a whole number z is in A we

have also S(z) in A (Step 4). Hence we may apply the

principle of mathematical induction to conclude that all

whole numbers are in A.

6. For every whole number z we have (x + y) + z = x + (y + z) ,

From Step 5 by the definition of set A (Step 2).

7. Since x, y were any whole numbers (Step 1) the state-

ment of Step 6 gives the desired conclusion of our

theorem.
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PO (Track B)

1. Exercise. Assume Axioms 1 and 2 and the principle

of mathematical induction, as given in §9. Using these, prove

that for all x in W we have

x: + 0 = 0 + x

(a special case of the commutative law for +). Hint: Form

the set A consisting of all those numbers x of W -- if

any -- for which we do, in fact, have x + 0 = 0 + x. Then

apply the principle of mathematical induction to this set A --

by using our assumptions to show (i) 0 is in A, and (ii)

whenever a number y is in A, then the number 8(y) must

also be in A.

2. Comment. Whenever the principle of mathematical in-

duction is employed in a proof, the application must begin by

defining a certain set A of whole numbers. A successful

application of the principle will result in the conclusion

that all numbers are in this set, and from this information

we must be able to establish our desired result. It is for

this reason that in Exercise 1 above we chose A to be the

set of those numbers x for which it is true that

x:+ 0 = 0 + x.

In many problems, such as the one just considered, there

is only one reasonable way in which to define the set A to

which mathematical induction is to be applied. In other cases,

however, several possible definitions suggest themselves --

one or more of these may work, but others may not. A case in
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point, is to be found in §9, where the principle of mathematical

induction was employed to prove the associative law of addition.

Let us review the circumstances.

The associative law for + states that for all whole num-

bers x, y, z we have x + (y + z) = (x + y) + z. In our

proof we first chose any whole numbers x and y. Then, hav-

ing chosen and fixed these two numbers, we tested each whole

number z to see whether or not x (y + z) = (x + y) + z,

and we formed. the set A of all those numbers z for which

the equation holds. We were able to show by mathematical in-

duction that all whole numbers are in this set A, which es-

tablished the associative law as desired.

Instead of the set A defined above, it is perfectly

natural to consider a set B defined in a different way, as-

follows. We first choose any whole numbers y and z. Then,

having chosen and fixed these two numbers, we test each whole

number x to :lee whether or not x (y + z) = + y) + z,

and we form the set B of all those numbers x for which

this equation holds. Now, if we could use mathematical induc-

tion to show that all whole numbers are in this set B, we

could again conclude that the associative law for + is true.

But when we try to apply mathematical induction to B, we get

stuck: There is difficuity for example, in showing that 0

is in B, which must be done in order to apply mathematical

induction.

Still another set, C, is a natural one to consider in

trying to prove the associative law for +. (How would we
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define C?) But we get stuck in trying to prove 0 is in C,

just. as we did for the case of B.

How can we tell in advance that the set A will work,

while the sets B and C will not? There is no general way,

except trial and error. Thus whenever an application of the

principle of mathematical induction is attempted, one has to

experiment with the definition of the set A to which the

principle will be applied.

3. Exercise. In Exercise 1 above a special case of the

commutative law for + wes established, using Axioms 1 and

2 and the principle of mathematical induction (as formulated

in §9). Now use those same assumptions to prove the commuta-

tive law for + in full generality. (Hint: of course you

can use the result of Exercise 1 as a part of your proof.)
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Chapter 4. Multiplication

§1 (Track A)

In Chapter 3 we presented two alternative definitions of

addition, and in this chapter we shall deal in the same way

with the operation of multiplication.

First Definition of Multiplication. We define a two-place

operation called multiplication, and symbolized , on the set

W of all whole numbers. If we operated with on any given

whole numbers x and y, the resulting number, x y, is

called the product of x and y, and is obtained by the formula

x y = y + y + + y

x occurrences of y

that is, by repeated addition of the number y a total of x

times. In case x is 0 we do not add any occurrences of the

number y and we define

y

This definition of multiplication as repeated addition is,

of course, familiar as the most common method of introducing

multiplication in the elementary schools. The need for a spe-

cial clause in the definition covering the case where the first

factor is 0 is sometimes overlooked; of course, it is unnec-

essary in schools which first study the system of counting num-

bers, 1, 2, 3, ..., where 0 is not present.

However, one may ask why we choose to define 0 y as 0,
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rather than as y, say, once it is recognized that the main

clause of the definition of x y does not give a clear and

precise result for the case where x is 0. There are several

ways in which this question may be answered,

1. From the viewpoint of aps11:cat: We know that if

x is the number of boys in a class, and if y _is the number

of marbles each boy has, then z y ,is the total number of

marbles ip the class (assuming that neither teachers nor girls

have any marbles). Now for the case where x is 0 -- an all-

girls' class -- there will, in fact, be no marbles, so we do

want to have 0 y = 0 for this app4cation.

2. From the point of view of simple laws: As we have

learned in elementary school, and as we shall see below, the

operation of multiplication satisfies a commutative law. That

is, xy=y,x for asy whole numbers x and y. Now if y

is any of the counting numbers we easily see that y 0 = 0.

For instance, using our definition of above, we compute

1 0 = 0, 2 7 0 = 0 + 0 = 0, 3 0 = 0 + 0 + 0 = 0; etc.

Hence, we must make our definition of multiplication give a

value of 0 to the products 0 1, 0 2, 0 3, etc.,

otherwise the commutative law would fail.

3. Compatibility with other definitions: We shall give

below an alternative definition of multiplication which does

not require any special clause for the case where the first

given number is 0. The original definition gives the same

value for x y as the new definition for all whole numbers
.11,

._) r.'

l
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x and y where x y 0, so it is natural to design the special

clause of the original definition in such a way that the prod-

ucts 0 y also have the same value as under the new defini-

tion. This value is O.

So much for the various reasons which motivate the special

clause_oflour first definition of multiplication._ Before we

can proceed, however, we must still examine the main clause of

our definition. If we employ this to obtain the product 4 2,

for example, we find that we must compute the sum 2 + 2 + 2 + 2.

But what does this mean? Since addition was defined to be a

two-place operation we can only add two numbers at a time, yet

here we seem to be adding four numbers.

The preliminary answer to this question is that we must,

indeed, add only two *numbers at a time, and so the four given

numbers cannot be added simultaneously but should be taken in

some order so that we carry out a succession of additions, each

time adding just two numbers. To indicate the order of carrying

out the additions we use parentheses. For example, one order

would be ((2 + 2) +2) +2 . But this is not the only possibil-

ity. Others are 2 + (2 + (2 + 2)) and (2 + 2) + (2 + 2),

and there are still two other posibilities. How do we know

that these five orders of summation will lead to the same result?

If they do not, which of the resulting sums is meant by the no-

tation 2 + 2 + 2 + 2 ?

It turns out that all orders of summation give the same

result, 8, and so the notation "2 + 2 + 2 + 2" may be used
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to refer unambiguously to this number. This can be proved by

several applications of the associative law for +. For example,

to show that

((2 + 2) + 2) + 2 = 2 + (2 + (2 + 2))

we first get

AJO + 2) + 2) + 2 = (2 + 2L+ L2 + 2)

by taking x to be 2 + 2, y to be 2, and z to be 2 in

the equation

(x + y) + z = x + (y + z)

which is involved in the associative law. Then we get

(**) (2 + 2) + (2 + 2) = 2 + (2 + (2 + 2))

by taking x to be 2, y to be 2, and z to be 2 + 2 in

the equation of the associative law. And finally we combine

equations (*) and (**) by the logic of equality to get the

desired result.

Similarly, whenever we add more than two whole numbers in

a given order, repeated use of the associative law will show

that any order for computing the sum by a succession of addi-

tions of two numbers at a time, leads to the same result as any

other such order. (A single proof covering an arbitrary number

of terms to be added can be given, but requires the principle

of mathematical induction.) It is only because of this result

that we are permitted to use the notation y + y + + y in

our definition of multiplication without providing parentheses

to indicate some particular order for carrying out the additions.

Thus this definition of multiplication requires justification
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which is usually taken for granted without mention in the ele-

mentary schools. (Compare Exercises 6, 7 of

Let us now turn to the alternative definition of multipli-

cation to which we have alluded above. We have already indicated

that our first definition of multiplication resembles the second

definition of addition given in Chapter_3, _insofar _as_the_de-

fined operation is expressed in terms of repeated application

of some other operation introduced earlier. It is thus natural

to inquire whether we can now give another definition of multi-

plication which resembles, in form, the first definition of

addition in Chapter 3. In order to define x y by this

method, where x and y are any whole numbers, we would first

choose sets A and B such that n(A) = x and n(B) = y,

i.e., such that the number of elements in A is x and the

number in B is y; we would then combine A and B somehow

to obtain a new set, C; and finally we would count the number

of elements in C and declare that the resulting number, n(C),

is the value of x y. This is, indeed, what we shall do.

But how are we to combine the sets A and B to obtain C?

Taking the union A uB will not do as part of a definition of

multiplication, since that method leads to the operation of addi-

tion (providing A and B are disjoint sets). We need another

method of proceeding from the given sets A and 15 to the new

set, C, and we now turn to a description of this.

Definition. If A and B are any two sets, then the car-

tesian product of A and B, denoted A x B, is another set,
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whose elements are all of the ordered pairs (x,y) which can

be formed using any element x of A as its first component

and any element y of B as its second component.

The adjective "cartesian" is taken from the name of Des-

cartes, a famous French mathematician and philosopher of the

18th century, whose invention of analytic geometry brought arith-

metic and algebra into a close relation to Euclidean geometry.

Descartes' use of ordered pairs of numbers (x,y) as coordin-

ates for points in a plane has already been encountered in our

study of graphs (Chapters 2, 3).

As a simple example of the cartesian product of sets, let

A = (0, 3, 4) and

B = (2, 3).

Then we have

A)<B = ((0,2), (023) 2 (322), (323) 2 (422)0 (423)) and

B)CA = ((2,0), (223)2 (2,4), (3,0), (3,3), (3,4)) .

Notice that A)(13 / B>eA because the ordered pair (0,2) is an

element of AXB but not of BXA. It is true that the ordered

pair (2,0) is an element of BXA, but (2,0) (0,2). The

fact that the ordered pairs (2,0) and (0,2) are not the same

is readily perceived by noticing that they are coordinates for

two quite different points with respect to a pair of coordinate

axes.

2

1
( x,O)

0 1 2 3
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It is worth noting that even though A x13 / Bx A in this example,

we do have n(A x B) = n(B ><A)

Now we are ready for the

Second Definition of Multiplication. We define multipli-

cation to be the two-place operation on the set W such

that, if x and y are any whole numbers then the product

x y is obtained by choosing any sets A and B such that

n(A) = x and n(B) = y, and then setting x y = n(A;<B).

We have already had several examples of definitions which

require justification of one or another sort, and the present

one is no exception. The kind of justification needed here is

similar to the one needed in the case of the First Definition

of addition. The need arises because if one person chooses sets

A and B such that n(A) = x and n(B) = y, and if another

person chooses different sets C and D such that n(C) = x

and n(D) = y, then the first person will compute x y to be

n(A;(13) and the second will compute x y to be n(CxD) --

but how do we know that n(AxB) will be the same number as

n(CxD)? Clearly we need a theorem.

Theorem. If A, B, C, and D are any sets such that

n(A) = n(C) and n(B) = n(D), then we will also have

n(A x13) = n(C 1,0).
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A proof of this theorem requires a heavy use of the func-

tion concept (Chapter 1, §4) which we have not developed in

much detail, and so we shall not give such a proof. However,

the reader should see that the Second Definition of Multiplica-

tion would be unsatisfactory if it were not for the fact ex-

pressed by this theorem. Incidentally, a comparison of the

statements of this theorem and the corresponding theorem justi-

fying the definition of addition will show certain differences

of detail which are not essential -- for example, the use of

letters "x" and "y" in the earlier theorem could have been

eliminated, or such use could have been incorporated in the

later theorem. However, there is one important difference:

The requirement that the sets A and B be disjoint is essential

to the definition of addition and to the theorem justifying it;

but there is no corresponding requirement in the definition of

multiplication or its justifying theorem.

As we have observed in the case of addition, the reason

why we say that the two definitions of this chapter, which seem

so dissimilar, both define the same operation, multiplication,

is that both definitions lead to the same value of the product

x y for Any. whole numbers x and y. In a particular case

this is easy enough to see. For example, according to the first

definition we have 3 . 2 = 2 + 2 + 2, and so 3 - 2 = 6.

Using the second definition we may choose the sets A = (0,3,14)

and B = (2, 3) used above in illustrating the concept of car-

tesian product, and by counting the elements of the set
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to obtain n(AXB) we find x y = 6 by this definition too.

But this special case does not give much insight into how

110 ^.91*ft 1r-v..+1.1 "4,1 t, thev 1.r../A-A -rt./AVM VI= 1.0*V 12=1.11/110XULAZ W111. 70.1.WaJO L=CLU

same value. The following considerations may help the reader

to see this.

Let x and y be any whole numbers whatever, x 0, and

let us compute x y by the first definition of multiplica-

tion. We get, of course, x y = y + y + + y, where the

term y occurs x number of times on the right. Now, recall-

ing the first definition of addition, we see that to compute

this sum y + y + + y we must choose x number of sets

Al, A2, ..., Ax, each having y as the number of its elements,

and no two of the sets having an element in common. We must

then form the union A
1
tj A

2
u ...0 Ax of all these sets by

combining all of their elements into one big set. Finally, the

number of elements in this union, n(Ai U A2 u Ax), will

be the desired sum y + y + + y, (having x number of

terms), that is we will have x y = n(Alt.) A2u... VAX).

Now how shall we choose our sets A
1,

A
2

..., Ax? Since

the number of elements in each set must be y, we might think

of taking each of these sets to be (1, 2, ..., y). However,

we cannot really take all of the sets Al, A2, ..., Ax to be

the same, for no two of the sets may have an element in common.

So let us modify ourfirst idea and take

e
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(2,2), ..., (2,y))

1

(x22), ..., (x,y))
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Then clearly each of the sets Al, A2, ..., Ax will have y as

the number of its elements, yet no two of these sets will have

an element in common. Thus, our first definition of multiplica-

tion (combined with our first definiticn of addition) gives

ix y = A2 U ...0 Ax) .

But what is this set A
1
tj A

2
ti

x
? It consists of

all ordered pairs (p, q) where p may be any of the numbers

1, 2, ..., x and q may be any of the numbers 1, 2, ..., y.

In other words, if we set

C = (1, 2, see, x) and D = (1, 2, es., y)

then Al A
2
u ...kiA

x is nothing other than the cartesian

product C)<D. But since clearly n(C) = and n(D) = y, we

see that x y = n(C xD) by the second definition of multipli-

cation. In this way we see that the two definitions of multi-

plication lead to the same value for Y y, namely

n(Alt) A2 t) ...klAx) or, otherwise written, n(C xt0.

In the reasoning above we considered quite arbitrary whole

numbers x and y, except that we assumed x 0. It will be re-

called that for the case x = 0 the first definition of multi-

plication has a special form. We leave the reader to check that

the two definitions of multiplication lead to the same results

in this case also.
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§2 (Track B)

1. Parentheses and ordered pairs. In §1 we mention the

use of parentheses to indicate the order for carrying out a suc-

cession of operations, in this case addition. Because addition

is defined as a two-place operation, in principle we can only

add two numbers at any given time. Thus the expression

"2 + 2 + 2 + 2" is ambiguous insofar as it does not indicate in

what order the indicated additions are to be performed.

The expression "((2 + 2) + 2) + 2" does indicate precisely

an order for carrying out the indicated additions. The rule is

that we always begin with the operations indicated with the

innermost pairs of parentheses, and continue performing opera-

tions "going outward" to evaluate larger and larger portions of

the given expression. Thus, to evaluate ((2 + 2) + 2) + 2 we

would proceed as follows:

First, 2 + 2 [= 4],

Second, (2+2) + 2 [= 4 + 2] [= 6],

Last, ((2+2) +2) + 2 [ =.(4-1-2).+ 2] [= 6+2] [= 8]-.

On the other hand, to evaluate (2 + 2) + (2 + 2) the procedure

would be:

First, 2 + 2 (= 4] -- this combination appears
twice in the given
expression --

Second, (2+2) + (2+2) [= 4+4] [= 8] .

In this particular case both of the numbers ((2 + 2) + 2) + 2

and (2 + 2) + (2 + 2) turn out to be 8 (as indicated in the
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text of +1 ). However, in general the way in which parentheses

are distributed to indicate the order of performing operations

will affect the numerical value of the result of the computation.

(See Exercise 2, below.)

If parentheses are put into an expression in a haphazard

manner, the result may be meaningless. For example, the expres-

sion "(2 +)(3_+___5)7___is meaningless since the first pair of

parentheses is an innermost pair which does not indicate a pair

of numbers to be added. Similarly, the expression (2 + (5 +) 4)

is meaningless.

A completely different use of parentheses is involved in

forming the name of an ordered pair. If the names of two ob-

jects are separated by a comma, we put parentheses around the

resulting expression to form a name of the ordered pair having

these objects as its first and second elements respectively.

This use of parentheses has nothing to do with the order of per-

forming operations.

2. Exercise. (a) The expression "1 + 2 5" isambig-

uous since there is no indication as to the order for performing

the indicated operations. Insert parentheses in this expression

to indicate one order for carrying out these operations, and

then (starting over) insert parentheses to indicate another order.

Evaluate the expression in each case.

(b) In the ambiguous expression "2 + 2 - 2 + 2", parentheses

can be introduced so as to indicate five different orders for

performing the indicated operations. If we carry out these five
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methods of evaluating the expression, how many different numer-

ical values do we get?

3. Exercise. In §1 there is a discussion of the use of

the associative law of addition in order to show that

((2 + 2) + 2) + 2 = 2 + (2 + (2 + 2)). (a) Show this equation to

be true using only the commutative law for addition and logical

laws.

(b) gote that the associative law can be replaced by the com-

mutative law in this way only in very special cases. Give two

more special cases where this is possible.

4. Classroom discussion. Review the line marked (*) in

the informal proof, using the associative law of addition, of

the equation ((2 + 2) + 2) +2 = 2 + (2 + (2 + 2)); that is,

clarify the use of the letters "x", "y" and "z". Have the

class give additional particular examples of the associative

law of addition where sums are substituted for the variables

x, y and z.

5. Exercise. One of the definitions of multiplication

(the first one given in §1 ) involves repeated addition; simi-

larly one of the definitions of addition (the second one given

in Chapter 3) makes use of repeated applications of the succes-

sor operation. (a) Review these two definitions and then com-

bine them to obtain 'a definition of multiplication directly in

terms of repeated use of the successor operation.

(b) Using this new definition of multiplication compute the

product 3 2.
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6. Exercise. (a) For what sets A is it true that

AXA = A?

(b) For what sets B is it true that n(B?(B) = n(B) ?

7. Exercise. Let A be the set of whole numbers less
than 5. (a) List the elements of A xA and, by counting,

compute n( A X A) .

(b) Let B be the subset of A X A consisting of all those

ordered pairs of A)cik whose first and second members are the
same. List the elements of B.

(c) Do the same for the subset C of Axil consisting of

those ordered pairs of A XA whose second members are equal to

twice the value of the first member.

(d) Draw pictures of B and C on one graph.

8. Exercise. Recall that the set-theoretic definition of

addition (in terms of the union of sets, Chapter 3) required a

justifying theorem. So does the set-theoretic definition of

multiplication (in terms of the cartesian product of sets, §1).

Compare the statements of these two theorems. Reformulate these

two theorems, eliminating the use of the letters "x" and "y"

in the former and incorporating them in the latter.

9. Exercise. At the conclusion of §1 the two definitions

for finding the product x y were shown to be equivalent for

all cases except where x is zero. Examine this case by using

both definitions of multiplication to compute 0 y.
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A = ((1,1), (1,2), (1,3))

B = ((2,1), (2,2), (2,3)) j

C )[(3717 7 7(3) (30)) , nrfl

D = ((4,1), (4,2), (4,3)) .

List the elements of sets E and F such that

--EXF= A UBUCU D.

11. Exercise. Describe in words the elements of the set

W xW, where W is the s1/4A of all whole numbers. Can a com-

plete list of these elements be put down?

0 (Track C)

1. Repeated Addition. A number line is helpful for teach-

ing multiplication in the early grades, using the repeated addi-

tion approach. For example the product x y can be obtained

by x number of jumps (beginning at 0), each jump being y

units in length. A number line painted on the floor would be

most useful for the physical jumping involved in computing prod-

ucts by the above method. Analogously, the standard game of

Giant Steps could be reformulated to involve products. [ "Johnny,

you may take 4 jumps each of 2 units length." Johnny answers

"Teacher, may I take 8 steps?" "Yes, you may.") It is also

possible to use the slide rule described in Chapter 3, moving

one stick x number of times to arrive at the point x y on

the fixed part.
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2. Cartesian Products. To use this approach to multipli-

cation one need not, of course, mention the name "Cartesian Prod-

uct." For example, the product 4 2 can be thought a as the

number of intersections of 4 vertical columns and 2 horizontal

rows as pictured below.

..

The geo-boards mentioned in Chapter 2, §12 are useful for con-

sidering such rectangular arrays of points: In each problem

the nails under consideration may be surrounded by a rubber band.

For the later grades, Cartesian Products can be introduced with-

out using numbers. For example, if a boy has 3 different col-

ored shirts he can wear, and 2 different colored pants, then the

cartesian product of his set of pants with his set of shirts

gives the set of the six possible combinations he can wear.

§4 (Track A)

Now that we have seen two alternative definitions for the

operation of multiplication, -3 on the set W of all whole

numbers, let us consider some of the laws, or general statements,

which hold about it. Two very basic ones have already been en-

countered in connection with addition.

Commutative Law for Multiplication: If x,y are any whole

numbers then x y = y x.

Among the particular cases included in this law, for example,
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is 3 5 = 5 3. If we seek to verify this by using the first

definition of multiplication, we see that 3 5 = 5 + 5 + 5 and

5 3 = 3 + 3 + 3 + 3 + 3, so that what must be shown is that

5 + 5 + 5 = 3 + 3 + 3 + 3 + 3. By carrying out the indicated

sums we can find that this is, indeed, the case. But this method

of procedure is not very helpful in seeing that other particu-

lar instances. of the commutative law will hold. For instance,

to verify that 2 4 = 4 2 we must compute the sums 4 + 4

and 2 + 2 + 2 + 2 and show that they are the same -- a question

which seems to be not very closely connected with our earlier

computation of the sums 5 + 5 + 5 and 3 + 3 + 3 + 3 + 3.

By contrast, let us seek to verify the fact that

3 5 = 5 3 using the second definition of multiplication.

To compute 3 5 we first find two sets, say M and J, such

that n(M) = 3 and n(J) = 5, and then we will have

3 5 = n(M :KJ). On the other hand, to compute 5 3 we must

form the cartesian product JxM (since the number of-elements

in J is 5 and the number in M is 3), and then

5 3 = n(JxM). Will we find n(M:o(J) = n(JxM), as claimed

in this case by the commutative law of multiplication? Let us see.

A convenient set to use for M is (1, 2, 3), since cer-

tainly n(M) = 3 in this case! Similarly, we may choose

J = [1,2,3,4,5) since, as we recall, the definition of multipli-

cation does not require M and J to be disjoint. Then the ele-

ments of MxJ will be all the ordered pairs (1,1), (1,2),

(1,3), (1,4), (1,5), (2,1), (2,2), (2,3), (2,4), (2,5), (3,1),
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(3,2), (3,3), (3,4), and (3,5). On the other hand, the elements

of JxM are the ordered pairs (1,1), (1,2), (1,3), (2,1),

t2,2), t223), (3,1), 0,2), (30), (4,1), (4,2), (40), (5,1),

(5,2), and (5,3). Notice that we can conclude that these two

sets, MxJ and JAM, have the same number of elements --

without counting either set! The reason is that the ordered

pairs which make up J>011 are simply those of M)<J "turned

arcomd" so that the first element of an ordered pair of Mx

becomes the second element of a certain ordered pair of J)(M

and vice-versa. Thus n(MXJ) = n(J)(M), and so 3 5 = 5 3.
4

The phenomenon encountered in this example is quite general.

If A and B are any sets whatever, we have A)1(B BxA -- un-

less A and B are the same set. However, in every case we have

.n(AXB) = n(B)cA), because the ordered pairs which make up

B)(A are simply those of A)(13 "turned around". (This can be

seen by reviewing the definition of cartesian product, §1.)

This fact leads at once to the commutative law of multiplication,

in full generality. For if x,y are any two whole numbers,

and if we choose sets A and B such that n(A) = x and n(B) = y,

then the second definition of multiplication tells us that

x y = n(A );B) and that y x = n(B;KA). Since, as we have

just seen, n(A)CB) = n(B)<A) by the "turned around" princiPle,

we conclude by the logic of equality that x y = y x

claimed in the.cOMMutative law.

The Associative Law for Multiplication. IfLajzairela.

whole numbers then we have
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The left side, (3: y) z, represents the number obtained

by first forming the product x y, and then multiplying this

by #7 The right side, (17 07) ".0.4a.rvrtgaletAvin* rtlimh_orsAral, 111.11.Mmoi ovS

tained by first forming the proe_ct y z, and then multiplying

x by it. (Compare item 1, §3.) The associative law asserts

that these two processes lead to the same number -- no matter

which whole numbers x,y,z we take. Let us try to see why this

law is true, using our first definition of multiplication.

Consider, for example, the case where x is 2, y is 3,

and z is 4, and let us look at the term on the right side of

the equation in the associative law, 2 (3 4). According

to our first definition of multiplication 3 4 = (4 + 4 + 4) ,

and hence 2 (3 4), which is 2 (4 + 4 + 4), must be

(4 + 4 + 4) + (4 + 4 + 4). In this last expression there are

3 occurrences of the numeral "4" within the first parentheses,

and 3 within the second, so that altogether we are adding 2 3

occurrences of 4. Because of the associative law of addition,

we can (as indicated in Chapter 3, §4) express this sum as

4 + 4 + 4 + 4 + 4 + 4 without reference to any particular pat-

tern of parenthesizing the five addition operations to be per-

formed. Since we are adding 2 3 accurrences of 4, the

number we get is (2 3) 4, according to the definition of

multiplication. Since we started with 2 (3 4), we have the

desired equality: (2 3) 4 = 2 (3 4).

These observations are quite general. If x,y,z are any

whole numbers -- neither x nor y being 0 -- then y z Is a
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sum of y occurrences of z. Hence x (y z) is a sum of

x expressions, each a sum of y occurrences of z. Thus the

total number of occurrences of z which must be added to get

x (y z) is y + y + + y , where here we have x occur-

rences of y. In other words, (applying the definition of mul-

tiplication once more), we must add together x y occurrences

of z to get x (y z). But adding x y occurrences of

z gives (x y) z, by definition of multiplication. Hence

(x y) z = x (y z), as claimed.

We must still consider the case where one of the numbers

x or y is O. Suppose, for example, that x is O. Then

x (y z) is 0 (y z), and this is 0 by the special

clause of the first c..efinition of multiplication (which asserts

that 0 multiplied by any whole number gives a product which is

0). Thus x (y z) = O. But x y = 0 y in the case

where x is 0, and 0 y = 0 by the special clause, so that

x y = O. It follows that (x y) z is 0 z. But

0 z = 0, by another use of the special clause, so

(x y) z = 0 by the logic of equality. Since we have shown

both x (y z) = 0 and (x y) z = 0, we finally have

x (y z) = (x y) zs for the case where x is 0, as claimed.

The case where y is 0 can be handled similarly; we leave de-

tails to the reader.

The law of multiplicative identity: For any whole number

x we have x 1 = x.
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The truth of this law is not hard to see using either of

our definitions of multiplication. It will be recalled that the

additive identity element is 0, sl.nce Mhen 0 is added to any

given number the result is that same number. Our new law shows

that the multiplicative identity element is 1, since when any

given number is multiplied by 1 the result is that same number.

Of course the number 0 plays a special role in the theory

of multiplication, too, as we see by the special clause of the first

definition: For any whole number x we have 0 x = 0 (and

hence also x 0 = 0, since x 0 = 0 x by the commutative

law for multiplication.) There is no similar phenomenon in the

theory of addition; that is, there is no whole number z such

that for every number x we have x + z = z.

Because of this special role of 0 in the theory of multi-

plication, we can not have a cancellation law for multiplication

of the same kind as we encountered in studying addition (Chap-

ter 3, §1). In other words, it is possible to have whole num-

bers x, y, and z such that x z = y z, and yet y z.

For example, 2 0 = 3 0 (sine 2 0 = 0 and 3 0 = 0),

but of course 2 /3. Indeed, if x and y are Ely: two different

whole numbers we will have x 0 = y 0 but x y.

Although the cancellation law does not hold in full gener-

ality for multiplication, we have a modified form of it.

Limited Cancellation Law for Multiplication. If x, y, z

are any whole numbers such that z = y Izanclii:zZO,

then x = y.
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How can we see that this general statement is true? Sup-

pose that x,y,z are whole numbers such that xz=y- z
And 7 O. Let us assume, temporarily, that x /T. Then one

of the numbers x and y must be smaller than the other -- say

x < y. From the equation x z = y z we can obtain another

by replacing the left side by a sum of x occurrences of zd

and the right side by a sum of y occurrences of z. Now apply

the cancellation law for addition x times, successively, to

this equation. On the left side we will be left with 0, of

course, but since x < y we see that on the right side we will

still have a sum of one or more occurrences of z. But since

z 4 0, by hypothesis, we cannot have 0 equal to a sum of one

or more occurrences of z. We have thus arrived at a contradic-

tion. This contradiction arises from our (temporary) assumption

that x y, and thus shows that after all we cannot have x jt y.

That is, we must have x = y if we start with the hypotheses

that x z = y z and z/ O. This is the desired limited

cancellation law.

Closure Law for Multiplication: If x and y are any two

whole numbers, then the produst x y is also a whole number.

As we have indicated in the case of the corresponding law

for addition, this fact about multiplication is part of what we

mean by saying that multiplication is an operation on the set W

of all whole numbers. Hence it follows immediately from either

of our two definitions of multiplication.

We also express this fact by saying that the set W is
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closed under multiplication. Various subsets of W are also

closed under multiplication, e.g., the set of all odd whole num-

bers, or the set of all positive whole nu '--mucJ.s 1 4 ... ll talmetlAmxa.e-c., w.n.a..s. mvss...J...

numbers other than 0).

We now turn to a very important law which connects multipli-

cation with addition.

The distributive law of multiplication over addition. For

any whole numbers x,y,z we have x (y + z) = (x y) + (x

The left side, x (y + z), is the number obtained by

first adding y to z, and then multiplying x by this sum.

The right side, (x y) + (x z) is obtained by first forming

the two products x y, and x z, and finally adding these

two products together. The distributive law asserts that these

two processes of computation always lead to the same result --

no matter what the numbers x, y, and z may be. How do we see

that it is true?

If x is not 0, then the first definition of multiplica-

tion tells us that x (y + z) is the sum

(y + z) + (y + z) + + (y + z), where we have added a total

of x occurrences of the term y + z. Using the commutative

and associative laws for addition, we can separate out the y's

and the z's, getting x (y +z) = (y + y + +y) +

(z + z + + z), where on the right we are first adding x

occurrences of y and then x occurrences of z. But applying

our definition of multiplication again (twice), we see that the

sum of x occurrences of y is x y and the sum of x
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occurrences of z_ is x z. Hence, we get

x (y + z) = (x y) + (x z), the desired distributive law.

Let us close this section by citing laws which connect mul-

tiplication with the relation less than, <, and the successor

operation S.

If x, y, z are any wholm --mbers such that x < y and

z 0, then x z < y z.

For all whole numbers x, y we have x S(y) = (x y) + x.

§5 (Track B)

1. Exercise. Using the first (i.e., the repeated addition)

definition of multiplication, show in detail that the associative

law of multiplication, (x y) z = x (y z), is also valid

for the case y = 0. (Compare the case z = 0 treated in detail

in §4.)

2. Exercise. Using the second (cartesian product) defi,i-

tion of multiplication, give a convincing argument for the valid-

ity of the multiplicative identity law.

3. Exercise. All sorts of operations on quite arbitrary

sets may satisy some of the laws which we have seen hold for the

operations and + on the set W. Assume that 0 and Er

are Gwo-place operations on some set H. Express formally, using

the letters "x", "y" and "z", the general statements that:

(a) the set H is closed under 0, (b) the operation 0 is
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associative, (c) the operation Erj is commutative, and

(d) 0 is distributive over FRP11

4. Exercise. Let J = 11,3) and let K be the set whose

elements are all of the subsets of J. Thus K has exactly 4

elements. (a) List the 4 elements of K and label them

a, b, c, and d.

Next, let us define the two-place operations CD and 0
on the set K to be the operations of union and intersection,

respectively; this makes sense, since the elements of K are

sets. (b) Make a table of the 16 elementary facts about the

operation 0 and another such table for the operation 0. Use

the letters a, b, c, d f.-,r entries in the table. (c) Are

either or both of the operations ED and 9 commutative?

(d) Is either operation distributive over the other?

(e) Do there exist identity elements for the operations e and ?

(f) Do either of the operations CD and 0 satisfy a can-

cellation law?

(Justify your answers to (c), (d), (e) and (f) by referring to

the tables prepared in answer to (b).)

5. Exercise. Consider the following array:

The numbers in the boxes are first multiplied

horizontally and vertically and the resulting

numbers are placed in the margins at the right and at the bottom.

-These marginal numbers are then multiplied to give the same final

product, entered in the box at the lower right, which for the
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above array is 24. (a) Fill in the boxes to give another ex-

ample and work out the products. Express the fact that the prod-

uct of the numbers in the right margin has the same value as the

product in the bottom margin by means of a general law, using

four variables. Carefully explain why this general law is true

by-using the commutative and associative -Taws for multi -plicatiotF.

(b) Enlarge the array, horizontally with more rows and then

vertically with more columns. Do the marginal products still

"work"? Why?

6. Classroom Discussion. Discuss the cartesian product

of any finite set with the empty set gf and relate this to the

second definition of multiplication.

7. Individual project. In Chapter 3, §9, we considered an

axiomatic approach to the theory of whole numbers. The axioms

mentioned there were the Principle of Mathematical Induction

(page 3.37), and Axioms 1 and 2 involving addition (page 3.39).

Let us now enlarge this system by adding two axioms involving

multiplication, as follows.

Axiom 3. For every x in W we have x 0 = 0.

Axiom 4. For every x,y in W we have

x S(y) = (x y) + x.

In the enlarged axiom system we will of course have the

associative law for addition (proved on pp. 3.39 - 3.40), and

--the commutative law for addition (mentioned on p. 3.43). Using

these, together with the new Axioms 3 and 4, prove:
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(a) The distributive law for multiplication over addition,

(b) the associative law for multiplication, and

(c) the commutative law for multiplication,

8. Exercise. (a) Formulate a general statement express-

ing the proposition that the operation_of_addition _is distribu-------

tive over multiplication.

(b) Give an example to show that this law is false.

9. Exercise. Give an example of a subset of W which is

not closed under multiplication.

10. Exercise. Using the first (i.e., the repeated addi-

tion) definition of multiplication, the distributive law for

multiplication, and the fact that 1 + 1 + 1 = 3, show that

3 5 = 5 . 3.

11. Exercise. In discussing the distributive law for

over +, in §4, it was stated that for any whole numbers

y and z,

(y + z) + (y + z) +..,+ (y +z) = (y + y +...+ y) +(z + z +...+ z),

where in each case the 3 dots represent the same number of

omitted terms. Consider the case of this law in which the term

(y + z) occurs only twice on the left, and prove this case

using the commutative and associative laws of addition.

12. Exercise. At the end of .54 are given two laws connect-

ing with < and with S. Find other true laws connecting

with <, <, and with S.
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§6 (Track C)

1. Learning Multiplication Facts. See exercise 5 of §5

for a practical method of teaching the elementary multiplication

facts, which may also be used as a way of demonstrating the com-

mutative and associative laws of multiplication. Such tables

-ean be introduced at first as a "game". Later they can be used

to "check" computation of products of 4 whole numbers. Note

that the associative law for multiplication is itself a method

for "checking" products of 3 whole numbers.

2. The Associative law of Multiplication can be visually

grasped by making (or ordering from the school district, if

lucky) a rectangular box made up of unit cubes, or blocks, which

can be fitted together.

For example, to show (3 4) 5 = 3 (4 5)

use a model as in figure (a) where

we have 3 4 blocks in each ver-

tical slab and there are 5 such

vertical slabs. This illustrates

the left side of the above equation.

For the right side the box can be

looked at as in figure (b) where

there are 4 5 boxes in each ver-

tical slice and 3 such slices. Of

__course, no matter how we slice it,

we have the same number of little

blocks in the big box.

(figure a)
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3. The distributive law for multiplication over addition.

This law can also be displayed visually in a way which makes it

intuitively simple to grasp, In contrast to the associative

law discussed in item 2 above, only two-dimensional squares are

needed instead of three-dimensional blocks.

yor_example,_to_illustrate_that 4 = (4 2) + 14 3) ,

we consider the 4,(5 array of squares

I- 1+3

which contains 4 (2 + 3) squares. By cutting down a vertical

line and separating the two pieces we get

3

The split array has (4 2) + (4 3) squares. in it. Since

the number of squares was not changed by cutting and separating

the original array, we see that 4 (2 +.3) is the same as

(1 2) + (4 3). Notice that it is not necessary to evaluate

the total number of squares as 20 in order to come to the con-

clusion that 4 (2 + 3) = (4 2) + (4 3) !
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4; The use of laws in computation. The laws of addition

and multiplication should be learned by elementary school students--

preferably by discovery rather than by being told what the laws

are. Motivation to learn the laws, a reinforcement of the learn-

ing process, should be brought about by indicating how the laws

nay-be-used to simplify computations.---For-example; if one-is

asked to compute (13 5) 4 and goes at it in a straightfor-

ward way, one first gets 13 5 = 65 and then 65 4 = 260;

neither of these multiplications can be done "in the head" by

beginning students. However, if one converts the given

(13 5) 4 into 13 (5 4) by the associative law for

multiplication, then the products which must be calculated are

5 4 = 20 and 13 20 = 260, both of which are much easier.

Make up other examples of this kind, in which a combination of

commutative and associative laws can be used to simplify compu-

tations.

Especially useful is the distributive law. For instance,

8 13 can be written as 8 (10 + 3) which, by the distribu-

tive law is the same as (8 10) + (8 3) or 80 + 24, which

is 104. Of course, it is just such a use of the distributive

law which underlies the algorithm for multiplying with 2-place

numerals, as we shall see in Chapter 5. Notice, however, that

the distributive law can be used in many different ways to eval-

uate a given product such as 8 13. For example,

- 13 = 8 (8 + 5) = (8 8) + (8 - 5) = 64 + 40 = 104.
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§7 (Track A)

In this section we shall investigate some of the geometric

pictures connected with the operation of multiplication.

Consider first the commutative law for multiplication. In

verifying the special case of this law, 3 5 = 5 3, we con-

sidered the sets -and ---J--=

the two cartesian product sets MX J and JAM, and finally we

saw that these two product sets, while not the same, have the

same number of elements. This last fact can be seen pictorially

by constructing a pair of coordinate axes in a geometric plane,

and considering the lattice points represented by the ordered

pairs of M )01 and of J)(M.

In fact, siace the elements of M'AJ are all those ordered

pairs (x,y) obtained by taking x to be any of the numbers

1,2,3 and y to be any of 1,2,3,4,5, we see that the points

of the plane represented by these elements form a rectangular

array consisting of 3 columns and 5 rows. (See Figure 1.)

A
5 . . .

4 .
I I

3 . . .

2 e .

1 1 4

0
e I I I >
1 2 3 4 5

Figure 1.



Page 4.32

On the other hand, when we mark the points corresponding to the

elements of J)(142 as in Figure 2, we find a rectangular array

consisting of 5 columns and 3 rows.

A
5

4-
3-
2 -

1

0 1 2 3 4 5

Figure 2.

V

It is geometrically evident that the arrays in Figures 1 and 2

have the same number of points, for either one of these arrays

can be obtained from the other by a process of rotating and

sliding.

It is useful to note that the elements of any cartesian

product of sets, A k' B, can be represented by a rectangular

array, whether or not the elements of the sets A and B are num-
_

bers. For example, if A = (George Washington, Abraham Lincoln),

and if B = (New York, Los Angeles, Kansas City, Chicago), and

if we wish to represent A ;<B, we select 2 points on a hori-

zontal axis which we label "George Washington" and "Abraham

Lincoln", we select 4 points on a vertical axis which we label

"New York, "Los Angeles", "Kansas City", and "Chicago", and then

each of the 8 lattice points determined by these 6 selected points

will correspond to one of the ordered pairs making up the carte-

sian product A x B. These lattice points form a rectangular
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array of 2 columns and 4 rows. In Figure 3

N.Y. 4.

L.A.

K.C.

Chi.

4

O

G,W. A.L. Figure 3.

we have circled the point (Abraham Lincoln, Kansas City).

Using the same sets A and B, we would picture the cartesian

product B X A by labelling 4 selected points on the horizontal

axis with the elements of B, and 2 selected points on the ver-

tical axis with the elements of A. The picture of B X A then

consists of a rectangular array having 4 columns and 2 rows.

This way of picturing cartesian products makes clear that

for any finite sets C ana D we have n(C )(D) = n(D xC), a

principle which underlies the commutative law of multiplication.

But these pictures of cartesian products can also help us to see

the truth of another proposition about sets, which leads to an

alternative method of understanding the distributive law of mul-

tiplication over addition.

Proposition. If A,B,C are any sets such that B n C = 56

(i.e., such that B and C are disjoint), then also A X B and

A X C are disjoint, and we have

A X (B u C) = (A x B) U (A X C).
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. .

Air

4 1 4

A
Let- A,- B-, and C- be- given-sets -B- and--C- disjoint . -Following

1 A "4111XL

Figure 4.

the pattern outlined above, we picture the elements of A as

points on a horizontal axis, and the elements of B and of C

as points on a vertical axis; since B and C are disjoint, we

may place all the points corresponding to elements of B above

the points corresponding to elements of C. Now when we mark

the lattice points determined by the selected points on the axes,

we see that the full rectangular array, which represents the

elements of A x(B , C), breaks naturally into two disjoint

subsets -- the lattice points representing A x B above, and

the lattice points representing A X C below. This illustrates

the two parts of the conclusion of our Proposition: A x' B and

A x C are disjoint, and A x (B u C) = (A X B) u (A < C).

Now using the Proposition we have just illustrated, we may

obtain a proof of the distributive law of multiplication over

addition as follows:

1". Let x, y, z be any whole numbers.

2. Choose disjoint set B and C so that n(B) = y

and n(C)= z.

y + z = n(B L)C); by line 2 and the first definition

of addition (Chapter 3, §1).
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4. Choose any set A such that n(A) = x.

5. x (y + z) = n(A X (B u C)); by lines 3, 4 and

the second definition of multiplication (§1).

6. A X (B u C) = (A x B) Q (A x C); by Proposition above.

7. x (y + z) = n((A x' B) u (A )<C)); by lines 5, 6

.1.1d logic -of equality.

8. (A X B) and (A x C) are disjoint; by Proposition above,

since B and C are disjoint by line 2.

9. n(A x B) = x y and n(A x C) = x z; by lines

2, 4 and second definition of multiplication.

10. n((A x B) u (A x C)) = (x y) + (x z); by lines

8, 9 and first definition of addition.

11. x (y + z) = (x y) + (x z); by lines 7, 10

and logic of equality.

Since x, y, z are any whole numbers (line 1), we see that

line 11 establishes the distributive law.

Let us now look at the pictures of graphs of equations in-

volving the operation of multiplication. If we first look at the

graphs of the equations y = 1 x, y = 2 x, y = 3 x,

we see that each graph lies along a straight line, and that the

lines corresponding to the three equations get successively

steeper. (See Figure 5.) On the other hand, the graphs of the

equations x = 1 y, x = 2 y, x = 3 y lie along lines

which get successively less steep. (See Figure 6.)
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1
6Y

till-lit -1.-tlI t

2 3 4 2. 3 4 4 42 7 s 9 0 II II
Figure 5. Figure 6.

Finally, the graphs of each of the equations x y = 1,

x y = 2, x y = 4, x y = 6 have only a finite number of

lattice points, and those that contain mug' than 2 points do not

lie on a single straight line. (See Figure 7.)

a

%yr.I X1=2.

. :

xy=10

I I I + I I
. >

I 2. 3 4 5 6

Figure 7.7.
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Another type of geometric representation for equations, as

we have seen in Chapter 3, §61 involves motions of the number

line. For example.. given the multiplicative equation _v = 2 x.

we consider a whole number line and from each point with coordin-

ate x on this line we draw an arrow pointing to the point 2 x.

q 1-----41 (---7777-- t 1 1

0 1 2 3 4 5 6 7 8 9 10

Figure 8.

The pattern of'these arrows suggests a motion of this line -- one

in which the endpoint, 0, does not move at all, and in which

the points further from 0 move further during the motion.

(Figure 8.) If we indicate the position of the points before

the motion on one number line, and the position of the same

points at the end of the motion on another line right below the

first one, the picture we get (Figure 9) suggests that the motion

is a uniform stretching of the line. In this stretching, each

0 1 2 3 4 5 6 7 8

4 kLf ;...41 1 1 >

I

\ ... ... NI., 114.

...lb .....

. . .. -. -.

1 2 3 4

Figure 9.

point moves to the right a distance equal to its original dis-

tince from the 0 point. Similarly, the equation y = 3 x

can be pictured as a stretching motion of the number line in

which each point moves twice as far to the right as its original

distance from the 0 point.
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Figure 9 has another interpretation. Instead of the two

pictured lines being thought of as the before-and-after pictures

of a single line in motion, we can simply c^nciA-=.r what we ac

tually see -- two half lines side by side. On each we have laid

off a number line, but the unit distance on the upper line is

such that twice its length can be fitted into the unit distance

on the lower line. When the two number lines are laid next to

one another in this fashion, to each number x on the lower

line we can read off the value 2 x on the upper line imme-

diately above. Similarly, by starting with a number line and

placing below it another number line whose unit distance corre-

sponds to the number 3 on the first line, we can look up any

number x on the lower line and find 3 x directly above..

This connection with change-of-units is one of the important

areas of application of the multiplication operation.

To conclude this section, we wish to indicate that a multi-

plicative equation such as y = 2 x can be represented by a

certain rigid motion of a number line, as well as by a stretch-

ing motion. What we have in mind is a rotation. Indeed, if we

start with a number line in horizontal position and rotate it

counter-clockwise, at a certain position the point 2 on the

line will lie directly above the original location of the point.
1. (Figure 10.) If we stop the motion at that position, then

for every whole number x, the point 2 x will lie directly

above the original location of the point x.

'. ',...
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Figure 10.

00"

The reason for this is the geometric fact of proportionality in

similar triangles. For example, in Figure 10 the triangle whose

verticEs are (0, upper 2, lol.:er 1) and the triangle (0, upper

1, 6, lower 3) are similar, because two sides of the small triangle

are on the same lines as the corresponding sides of the large

triangle, while the third sides of these two triangles are par-

allel (both being vertical). The geometric theory of similar

triangles then tells us that the ratio of the lengths of the

bottom side to the top side of the small triangle, must be the

same as the ratio of the lengths of the bottom side to the top

side of the large triangle.

0 (Track B)

1. Exercise. Suppose that C = ((California, Sacramento),

(Oregon, Salem), (Washington, Sacramento), (Oregon, Sacramento),

(California, Salem), (Washington, Salem)). List the elements of

sets A and B such that A Y,B = C. Illustrate the elements

of C by means of a rectangular array.
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Let H be the set of those ordered pairs (of whole

numbers) which are represented by the lattice points in figure

(a) below. (i) Find sets A,B,C,D,E,F of whole numbers, such

that H = (A xD) u (B A E) u (C x F). (ii) Do we also have

H= (A up u C) x (D u E u F)? Justify your answer.

(iiil Are the sets A and B disjoint? If so, can they be re-

placed by other sets A' and B' which are not disjoint in

satisfying (i)?

i4

3

I

2. 3 4 s 6 i figure (a)

3. Exercise. For each of the following equations, state

whether its graph consists of a finite or infinite number of

lattice points, and whether it lies on a single straight line

or not: (i) x y = 3

(ii) x = 5 Y

(iii) y x = 16

(iv) 4 x = y .

4. Exercise. What equation can be pictured geometrically

as a uniform stretching motion of a number line on which each

labeled point moves three times as far to the right as its

original distance from the zero point?
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5. Exercise. Consider the following figure on which a

triangle T with vertices (0, upper 3, lower 2) is described.

(a) Give the vertices of two more triangles, U and V, each

of which is similar to the given one.

/T
f

1 1 10
1 3 Li 5 b

(b) Are these two triangles you found similar to each other?

(c) Write an equation involving variables "x" and "y", and

two uses of the multiplication sign, such that when a numerical

value x is given the corresponding number y can be read off

by means of the above diagram. Explain how we do this "read-

ing off".

6. Discussion. As in Exercise 4, certain equations lead

to "stretching" of a line. Discuss stretching and shrinking

generally. Are such motions of a line "rigid motions"? What

is a rigid motion?
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§9 (Track C)

1. The Distributive law of Multiplication. As indicated

in §3, item 2, we can proceed, without mention of cartesian

products, to consider rectangular arrays of physical sets in

the classroom. These are very helpful for teaching multipli-a-

tion and related laws. For example, to show 3 (2 + 5)

= (3 2) + (3 5), obtain a bag of marbles or plastic chips.

Then the product 3 - 2 can be pictured by arranging the chips

as follows:- 8 8 8 To get the product 3 5 arrange

them:

1 1 I
Hence (3 2) + (3 5) is illustrated by the entire array.

But by moving the top batch down an inch or so, we see that we

have just 3 (2 + 5) chips.

2. The Commutative law of multiplication is even easier

to demonstrate using physical objects, since to show, for example,

that 3 2 = 2 3, arrange the chips in rectangular array,

such as o o . Then circle these chips with a crayon to show

o o
o o

3 sets of 2 or 2 sets of 3. CCi o) or

(b

/3\
0

0

0

so

3. Change of units. Measuring physical objects by using

a number line can be a stimulating classroom activity which

helps to motivate the concepts involved in changes of units.
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Colizider a length of string which when stretched out and placed

on a number line falls between two points on the line. How can

we describe its length? One way would be to change the basic

length of the unit on the number line, lengthening it or short-

ening it the proper amount so that the string, when placed in

the--new number -line, would fall on a labeled point.- For more

advanced students consider the problem of devising a new number

line (actually the basic unit) which is capable of measuring two

different lengths of string, neither of which falls on a labeled

point of the original number line.
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Other relations whose definitions should be clear are:

(1) less than or equal to, written < ,

(ii) treater than or equal to, written >..

An Experiment in Elementary School Mathematics Instruction.

Going on in some elementary schools of Berkeley and certain

other East Bay cities is an experiment in mathematics education

which deserves the attention of anyone,uho plans to teach. This

project, called by the acronym SEED, Special Elementary Education

for the Disadvantaged, is operating on grade levels one through

six in special schools, those which have a preponderance of stu-

dents whose upbringing has been called disadvantaged (for a

variety of reasons).

The project departs from traditional mathematics instruction

along three m.7.in paths:

(1) The subject matter presented is the kind usually con-

() sidered "advanced mathematics', for it revolves about algebra

and abstract geometry. This is based on the remarkable realiza-

tion that students in the elementary grades can comprehend the

kind of mathematics ordinarily reserved for high school and col-

lege students.

(2) The teacher is not the usual elementary school teacher

but rather a specialist in mathematics, one who has training at

least at the level of D.A. in mathematics.

(3) The method these specialists are using is called the

Discovery Method, whereby the student is directly told as little

as possible, but instead he is led to make discoveries for himself.

The regular teacher remainz2 in the room while a specialist

takes over the class. This takes care of dc.acipline problems and

satisfies a state law concerning credentialed employees.

More importantly, however, this regular teacher is a witness

to some remarkable transformations in her students. Positive moti-

vation, so critical a concept in teaching and one so often lacking
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in average teaching becomes a reality when students are permitted

and encouraged to creatively take part in the subject matter. The

children become fascinated with the process of discovering and com-

municating mathematics. In more common language they are turned-on.

As an extension of the SEED program, in the ninth grade of

Roosevelt Junior High in Oakland a math specialist has been working

-with-the -students,--having them teach third-graders--advanced mathema--

tics using the discovery method. This program has altered their

lives to a considerable degree, and it is these ninth graders who

will visit your sections at their "..c.X C time of meeting and present

a few facets of themselves and the SEED program.
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Remark: From the teaching demonstrations we have all witnessed,

the possibilities f-ir creative teaching are seen to be vast.

We must rededicate ourselves to revolutionalizing outdated

methods of teaching.

Recall that in our study of the Whole number system (142+1.,exp),

we began by describing a =here for naming the elements of W.

This was necessary since W is infinite, whereas the number of

symbols employed to name the elements of W is finite. In our

previous scheme we took ten basic symbols for the names of the

first ten numbers. These were: 0, 1, 2, ...1 9. To name those

numbers that followed nine we used combinations of these first

ten names--that is, 10, 11, ..., 20, 21, ...1 30, ...1 90, ...,

99, 100, There is, however, no mathematical reason why we

give different names to the first ten numbers and from these

develop a scheme. In fact, there are other possible ways, each

of which results in a different pumer4Iion scheme.

We'll now demonstrate one alternative numeration scheme,

choosing 3 as its base--that is, we'll use three different basic

symbols 0, 1, 2, and name all of W using combinations of these

three. Thus, the whole numbers in their natural order would be

named as follows:

0, 1, 2, 10, 11, 12, 20, 21; 22 100, 101, 102, 110, 1111

112, 120, 121, 122, 2001 201, ...

Intuitively, you should be able to see that this is the same

kind of scheme we have previously used, except that we have but

0, 1, 2 to work with. However: if we want to talk about both

of these schemes, we have to have a method fc:r distinguishing

the two. One such method, the one we will adopt, makes the

notational c.mvention that numbers in the base 3 numeration scheme

are to be put in parentheses with a subscript denoting the base.

E. g . 0, 1, 2, (10)
3'

(11)
3'

(12)
3.

(20)
3'

(21)
3

, (22)
3'
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Now, considering only what we have called the counting numbers

(that is, leaving out 0) we see that (10)3 is the third number

in the scheme of whole numbers and so (10) = 3.

Similarly-C.1.02)3 = 11

Weill .now di.scussliow to translate from one numeration scheme-

to..:_another without having to gn through the numbers in their

natural_order._ This translation can. be accomplished by using

the polynomial representation of numbers, which we have discussed

xpressed..in powers of thebase 10,

1-we. - 127' = 10 2_) + (2-101) + (7-100)
-

.3 se
.
lbere'is-a similar representation that can be made Psi' numbers

described in different bases.

... before.

Becall that in the base 10 scheme, a number say 127, could be

For example,

(102)
3

= (1.32) + (0.31) + (2-30).

= (1.9) + (2.1)

9-+ 0 + 2

= 11

Hence (102)
3
= 11 which we knew by the simple-process

of counting-the-numerals in the base 3 scheme until

we came to the eleventh, beginning as we mentioned

before at 1.

With this process of representation in mind, we can find the way

to express 127 in the base 3 number system.

.0 -

First we represent 127 as a polynomial in powers Of 3, using

the following .powers of 3 to help us.

3
0

= 1

..3
1

= -3

3
2

= 9
...

3-- = 27

= 81 .

35. 243
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Notice that 127 is smaller than 243 and so cannot be a multiple

of 35 . So we try 34

i.e. 127 = 1°3 + (something else)

The (something else) is found by first finding out how much

is left in 12.7 after taking out 1.3 ; that is, after subtracting

fronT-127---Thitleaves 46.

1.

hence

Now out of 46, we can get 1°33 + (something else)

127 = 1.34 + 1.33 + (something else)

Doing what we did above, we finally arrive at the following:

127 = 1.1114) + i.113) + (2°12) + (0.31) + (1_30)

127 = (11201)
3

Now, say we pick 2110 in base 3 (that is, (2110) 3) and want to

express it in base 10. This we can do as follows:

(2110)
3

(2.33) + (1.32) + (1.31) + (0.30)

= (2.27) + (1.9) + (1.3) + (0.1)

= (54) + (9) + (3) + (0)

= 66

Thus (2110)
3

= 66

In this way you see it's possible to pass back and forth between

the two numeration schemes. Either one, of course, is satis-

factory in itself, and although you are more used to the base 10

scheme, our counting process, our algorithms and our general laws

all hold in the base 3 system.

For example; say we wanted to count the elements in the

set A = [R.Kennedy, R.Nixon, E.McCarthy, N.Rockefeller, D.Gregory,

North Star]

following our procedure for counting, we take the elements of A

and line them up with the counting numbers, this time using the

base 3 system.
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So, D.G., N.R., N.S., E.M., R.N., R.K

1 2 (10)
3

(11)
3

:12)
3

(20)
3

Thus n(A) = (20)
3

If we had used our base 10 scheme, we would have found n(A) = 6

and, of course, this checks since 6 = (20)
3

Now, letrs indicate how we would use the addition algorithm using

the base 3 scheme. First, recall that this algorithm depended

upon our use of the elementary addition table, + 0 ...,9

9

In the base 3 system, elementa.c.,- addition facts are even simpler.

0

1

2

0 1 2

0 1 2

1 2 (10)
3

2 (10)
3

(11)
3

,

This table thus becomes hypothesis (1) for the addition algorithm.

Hypothesis (2), our general laws among which are the associative

and commutative laws, are exactly the same as before since these

laws concern themselves with the whole numbers themselves and not

the names of the numbers--that is, not the numeration scheme.

Hypothesis (3), the last of those underlining the addition al-
,

gorithm, was the polynomial representation of a number in powers

of the base.

Thus, to add (201) and (122) we proceed similarly to the way

we did with numbers in the base 10 scheme. -We "carry" when the

numbers added are greater than 2, using the elementary addition

table for the base 3 system.
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(201)
3

(122)-
A

(1100)
3

We now check this result by using the translation process which

we described above.

(201)
3

(2.3
2
) + (0.3

1
) + (1.3

0
)

= 18 + 0 + 1

= 19

(122)3 =
(1.32) (2.31) <2.3°)

= 9 + 6 + 2

= 17

Finally, (1100) -= (l-33) + (1.32) + (0.31) (0.30)

= 27 + 9 + 0 0

= 36

and since it is true that 19 + 17 is indeed equal to 36, our

check is complete.

Before leaving numeration schemes, we might mention that

certain schemes other than the base 10 have found applications

outside of mathematics. In particular, the base 2 scheme, a

most economical system because but two different symbols, 0, 1,

are used, is important since it is this scheme which is used in

almost all electronic computers.

In order to see why number systems other than (W, +1 .1 exp)

are desirable for study, let's examine a few of the shortcomings

of the Whole Number system. From a practical standpoint, simple

measurement of physical objects cannot be handled adequately in

(W, +, .1 exp). Recall that we discussed representing the whole

numbers on a line:
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But if we want to measure an object, its beginning or end may
not coincide with a whole number.

e.g.

2 3

(object)

In_additiort,mathematicians themselves are not esthetically-satis-
fied with the whole number system. For example, consider the
process called milattasti.on, usually denoted by - placed between
certain whole numbers. Mathematicians do not as a rule call -

an operation on W because it cannot be applied to Anx pair of
whole numbers x, y to get a new whole iluzber y. n _other

words, subtraction does not satisfy a closure law in W. How
could we define subtraction more satisfactorily? First, notice
that _it is a function which operates on certain, ordered pairs
(x, y) of whole numbers.

Let's define S to be the set of all those ordered pairs (x,
of whole numbers such that x > y i.e. such that the first member

of the ordered pair is greater

than or equal to the second

member.

Using our definition of the relation > and the basic laws we
have studied, we could now prove the

Theorem: If (x, y) is za element of S then there is one arid

only one whole number z such that x = y z.

As a result of this theorem, we could introduce subtraction into

a subset of W, the set 32 as follows.

Deanition of Subtraction,: For any ordered pair (x, y) j.n, S

we define x - y as the unique whole number z such that

x = y + z
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Recall from last lecture, we were discussing a few disadvantages

of introducing subtraction into the whole number system

(W...,,exp); for example, when we try to extend the general

laws which apply to +,lexp in an analogous way to subtraction,

__all kinds of "messy" exceptions are necessary. The following. _

will further explain what we mean by "messy exceptions".

First we defined S as the set of all ordered pairs

(x,y) of whole numbers such that x > y. Then we defined

subtraction, -, as a function which acts on any pair (x,y)

in the set S. The result of this action is a whole number z;

namely, the unique whole number z such that x = y + z.

If, however, xLy are whole numbers such that the ordered
in ,

pair (x4y) is notieS (i.e. if x <y), then there is no

whole number z such that x = y + z, and hence subtraction

is not defined for such an (xsy). In other words, x - y

is meaningless if x < y.

With this definition of subtraction in mind, lets now

look at a few of the more familiar aspects of it.

There are Particular Subtraction facts, such as:

12 - 4 = 8

3 - 0 = 3

5 - 4 = 1

4 - 5: meaningless

Also, there are General Statements concerning subtraction:

e.g. For any whole number x in W, x - x = 0

For any whole number x in W, x - 0 = x

Lets check the possibility of a commutative law for

subtraction in W. It would read:

for any x,y in W x-y=y- x
Clearly, this would only be true in case x = y, because if

x < y, then by definition the left side of the above equation

is meaningless whereas if x > y the right side is meaningless.



r-
Lecture 13, April 29, 1968. 2

Thus, there is no commutative law for subtraction in W.

What about an Associative law?

It would read: For any x,y,z in W x - (y - z) = (x - y) - z

Is this correct? No, it is false and we can show this by

a particular example.

_Take _x = 4, _y_=-- 2, z = 1

Then the above equation reads 4 - (2 - 1) = (4 - 2) - 1

That is, 4 - 1 = 2 - 1 clearly false.

How can we change this law to make it a true one. One possible

way is to make it read:

'or Any x,y,z in W x - (y - z) = (x -5) + z

Now, it is true that there are no numbers in W which make

this equation false, but if x = 0 and y > 0 then the

right hand side is meaningless; we have to search further.

We could again change it to read:

For any x,y,z in W if x > y and y > z then

x - (y - z) = (x - y) + z

Here finally, we have a true general statement, but not an

associative law for subtraction. Notice, that to make it

true, we were forced to impose fairly complicated conditions

on x, y, z. This is what we meant when we described the general

laws concerning subtraction as unesthetic.

Lets look at a distributive law for multiplication over

subtraction, with the necessary conditions to make it a true

statement.

For any x,y,z in W, if y > z,

then x. (y - z) = (x. y) - (x. z)

It is precisely these messy conditions we will eradicate when

we pass from the whole numbers to the integers.

Remark: Usually, in the elementary schools, the

positive rational numbers (fractions) are studied

prior to the introduction of the negative numbers,

but since there is nothing absolute about the order
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in which they are presented, here we will go to

the negative numbers first.

From our study of the whole numbers, we now know that:

if a,b are any whole numbers such that a > b, then

there is a whole number x such that a = b + x. But

if a,b are whole numbers with a < b, then there is no

Whine number --sdoh-that- a = b + x. VI particular,

there is no whole number x such that 0 = 1 + x.

We are now going to extend our system of whole numbers

to a new one with more numbers in it in which there will be

-at-number (not a whole number) Which when added to 1 will

give 0.

(i) We must find a set of numbers, call W J, contain-

ing W as a subset with at least one new number

in it.

(ii) Since the operation addition has only been defined

in W, in order to add numbers in this new set J,

which includes W as a subset, we must extend our

previous definition of addition to include all the

numbers in J. This means finding an operation,

lets denote it by +j, which can act on any

numbers x,y in J with the result of this action

being another number x y in J. Furthermore,

we require that whenever x,y re in W, then

x +j y = x + y. That is, when this new operation

+ is restricted to the numbers in W, it gives

the same results as +. This is what is meant

when we say +j is an extension of +.

(iii) Similarly for multiplication in the new set J,

which we'll denote by .j.
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Now, that we've described our desired goals, how can we

accomplish them? There are, naturally, several equally valid
ways. Moreover, as with any mathematical theory, there are

axiomatic ways as well as the definitional approach. We have

mentioned this earlier with reference to Euclidean Geometry

and- the axiomatic approach that was used by-G. Peano.

To begin, we'll give a general idea of the definitional

approach. The mathematician sees that he needs a new number

in J, call it 1 such that when combined with the number

1 in -J under the new operation +4. it gives 0; that is,

1 +J 1 zr.t 0

We now look through the elements of J seeking a number y

such that 2 + y = 0

Is there one?

.
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We have been studying the whole number system (W2+,),

which for various reasons already discussed, we want to extend

to a new number system (J,+j,; this extension means:

finding a set J which has W as a subset and finding

operations +17 and faj on this set J such that whenever

x2y are elements of W, then x +47 y = x + y and x Ty = x y

In order that this number system (J + j ) be indeed different

om----(14;+2- ) we- also require that J have- a number x

it such that 1 + x = 0.
.

Question I: Can we find such a system (J,+47247) containing

only one new number in J in addition to the old numbers of

W? We can answer this in the following may: suppose 1* 10

a number in J such that 1 +47 1 = 0. Since J is closed

under +47 we must have that 1 +47 1 is also in J.

Since we are assuming here that J = W V (1 j, it must be

that 1* +47 1* is a number in this set. Which one can it be?

Could it be that 1* + 1* = 0?
Jr

No, because if 1
*

+J. 1
*

= 0, then the following would hold:

1* +471 * =0 =1 +47 1*

+47 1

and using the cancellation law, we would get
*

1 = 1

This is false (i.e. 1* 1) since 1 is in W and 1* is

not in W. So by assuming that 1* +441* = 0, we are led to

a contradiction. We thus know that 1 +1, 1*,i0

Could it be that 1* +
J

1 = 1?

No, because if 1 +47 1 = 1, then by adding 1 to both

sides we wouTa get

1 +J (1* +47 1*) = 1 + 1

and using the associative law, we would get

(1 1'T 1*) 1 = 1 1

but we know 1 + 1
*

= 0, so thirabove equation reduces to:
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0 -I- = 2,

which by the identity law for +J reduces to 1 = 2

This also is false since 1 is not in W, whereas 2 is.

We have again been led to a contradiction, so our hypothesis

again must also be false--that is, we now know that

1 + 1 / 1

You should now see thaw pattern and be able to show that

1
*

-/ 2

/3
4

So .*we row that 1 4.. A in not Anna, to any whnle rumba',

But

Could it be that 1 +0. 1
*
= 1

*
?

NO, because if this were so; that is, if 1* +a 1* = 1*,

then adding 1s to both sides of this equation, we get

1 +
J

(1* +_ 1*) = 1 + 1*

i.e. (1 +0. 1*) +0. 1* = 0

i.e. 0 -1-1. 1* = 0

*
i.e. 1 = 0,

but in fact this is not so, e =-1e 0 is a whole number and

1 is not a whole number. Thus, we've answered the above

Question in the negative, by showing 1* +IT 1* is not a

whole number, and in addition it is not equal to 1 . Hence

1 + I must be a second new number of J. What else can

we say about this second new number 1 + 1 in J?

We claim: 2 + (1* + 1*) = 0

Proof: 2 = 1 + 1

hence, 2 +0. (1* +0. 1*) = (1 + 1) +J (1* +0. 1*)

= (1 +
J

1) +
J

(1 + 1 )
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and by two applications of the associative law for +J,

= 1 +
J

((1 +
J

1*) + 1 )1

which by definition of 1* = 1 +
J

(0 +
J

1*),

which by the commutative and = 1 + 1*

identity laws for +j

= 0

Thus, 2 +47 (1* +47. 1*) = 0 and knowing this it is natural

to introduce the

Definition: 2
*
= 1

*
+ 1

*

Now, using this definition and the above claim which
41

we have just proved, we get that 2 +47 2 = 0

Thus, we have found our new system must contain at

least two new numbers, 1* and 2*.

Question II: Do we now have enough new numbers to satisfy

our requirements? No, we don't, and we would show this by

considering the number 1* +j, 2*, which must be in J be-

cause J is required to be closed under +
J6

Arguing as

before we could show: 1 + 2 / 0

That is, 1
*
+
J

2
*

show that 3 +
J

(1*

duce the

Definition:

so that we

is a third

+ 2*) = 0,

* *
3 = 1 +

J
2 *,

1*

2

new number. Moreover, we could

making it natural to intro-

would have 3 +41 3* = 0
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Proceeding in this way and using the Principle of Mathematical

Induction to obtain full generality, we would finally see
that: for every old number z, except 0, there must be
a new number z in J such that z + z = 0

Furthermore, if x,y are two different old numbers

each different from 0, then x and y will_also be
different from each other.

We have been considering the following Problem. We

wish to find a number system (J,+j,j) which

Li) _Ls an extension of (141,4-,)

(ii) satisfies laws similar to those holding in the

system of whole numbers, e.g. the commutative,

associative, cancellation, and identity laws

for +I, similar laws for e

JJ
etc., and

(iii) contains a number x such that 1 + x = 0

We have already found that If we have a system satisfying (Os

(ii), (iii), then

be an element z

(a) z +

for everi--z in W, z 0, there must

in J such that

z = 0, and

(b) all these elements z are new numbers,

i.e., they are not whole numbers of W.

Furthermore, if xsy arc whole numbers / 0 and if x y,

then (c) x
*

y
*

Thus J must contain infinitely

(i.e., numbers not in W): 1*,

many distinct new numbers
* *

2 , 3 ,... .

Now that we know something about the size of J, let

us find out something about how the operation .j must work.

First of all we have

(A) 1* 0 = 0 and 1* 1 =

because of the general laws x pj 0 = 0 and x j 1= x

which are among the desiderata (ii) above. Using the second

equation of line (A) above, together with the distributive
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Law, mw. find

1
*

2 = 1* J (1 +j 1) = (1* J 1) +j (1
* J 1

= 1 +j 1*

= 2*

Z

by definition of 2*.

Similarly, we can find 1* 3 = 3*' 1 4 = 4
*

2 ...

and more generally, for every z in W (other than--0),

(B) 1 ej z = z*,

= 2*

2

Next let us compute 1
* i * Using the fact that

2

= (1414j

law, we
,

find 1
*

...IT (1 1*) = 1 %/. 0

= 0 from line (A)

(1* .41 1) +3 (1* j 1*) = 0 (distributive law)

1* +.1 (1* J 1*) = 1 +j 1* (by (A) and (a))

= 1* + 1 by commutative law (ii)

(C) Hence 1* J 1* = 1, by cancellation law for +J.

Now if z is any whole number L 0, then

1 z
*

= 1
*

ej (1* j z) by line (B) above

= (1* 1*) ej z by associative law

for

= 1 J z by line (C) above

= z by identity law

for J.

(D) Thus we've down: 1 .j z = z, for z in W, z 0.

Next, if y2z in W and y2z 0 then

y z
*
= (y .j 1*) z by line (B) and

commutative law

Z= (1414j
for c

by associative law,

for c

by associative law,
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= y z

= y z

by line (D) above

since reduces

to when acting

on numbers in W.

(E) Thus we've shown y* .s z* = y z whenever y2z in

W and ylz 0.

y2z fn r-ir and ylz /-0 then

y
d

z
*

= z
*

.41 y by commutative law, .

(7)

= (1* .j z) .j y by (E)

,

= 1
*
.j (z j y) by associative law, -IT

= 1* -a (z y) since IT reduces-to

on W
y)= (z y) by (B) again.

We've shown y z = (z y)
*

and

z
*

y = (z y)
*

whenever y,z in W and y,z / 0.

By combining (A), (E), (F) we get a complete rule for

carrying out the operation aT on any pair of numbers of J,

new or old. Similarly, one can find how to carry out the

operation +j.

With all this knowledge about how (J2+j2 41) must look

if it is to satisfy (i)2 (ii)2 (iii) above, we can (in various

ways) construct such a system.

For instance, given any z in W, z 0, we can

define z to be the ordered pair (z, Antares). These
Itnumbers

It

z
* are not in W, and if y z then y z

SO we can define J to be the set W U (1 22
*
23

*
2...) and

then we can define by the formulas (A), (E), (F) above,

and we can define +j by analogous formulas.

It is then possible to prove that the system (J2+47,94)

so defined satisfies (1)-(iii).
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As a reminder of our notation_, recall that we denoted

the set of whole numbers by: W = (011,2131...)

zero by: 0

and the Natural numbers (or counting numbers) by: N = (1,2,3,...)

Also, we have begun to study the set of

,Negative numbers: (1 12 13 ,...), where, for each natural

number b, we defined b* = (b,Antares). Putting these

negative numbers into a set together with the whole numbers,

we get the set J which we called the set of Integers.

i.e. we defined the set J as follows: J = W UThe set of all

negative numbers.

=
'w

1 sic a3 jpito

On this new set J we defined the operation multiplication,

written as follows:

(1) For two natural numbers

If bsc are any natural numbers, b C = b c

(ii) For two negative numbers

If bsc are any natural numbers, b* 41. c = b c

(iii) For one natural number and one negative number

If b, c are any natural numbers, b c
*
= (b c) and

c b = (c b)
*

(iv) If one number is zero

Given any integer x, 0 x = 0 and

x 0 = 0

Also, we have the Definition of +. on the set J

(1) For two natural numbers

If es t) are any natural numbers, a +41 b = a + b

(ti) For two negative numbers

If aob are any natural numbers, a* +IT b* = (a + b)*

(iii) For one natural number and one negative number

zr a,b are any natural numbers,
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b, if a
a + b =

(b a)* if a < b

(b - a)* if b > a
b +

J
a =

a - b if b < a

(iv) If one number is zero

I-fx is any integer, -0- +13. x-= x

x + 0 = x

By way of examples,

Notice, from part (iii) of the definition of +47, that

a) 1* +41 1 = 1 - 1 = 0, and

b) 1 + 1* = 1 - 1 = 0

c) 3 +13. 8* = (8 - 3)* . 5*

d) 8 +a. = 8 - 3 = 5

And from part (iii) of the definition of ej, that

3 8* = (3 8)* = 24*

We have now completed our definition of the Integer

Number System (411+Js: It can be proven that this new

system satisfies the three conditions we previously desired

any extension of (W2+,-) to satisfy, although we will not

do so here. It should be immediately clear, however, that

(410+j,j) is an extension of (W,+,).

Definition: We introduce on J a one-place (unary) operation,

called negation and denoted by -; that is, given any integer

z of J, we apply the operation to get another integer "z,

which we define as follows: If a is any natural number,

then = a

= a

0 = 0-
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Question: For -x an integer, Is a'x a negative number?

You can't tell yet, since we don't have enough information

about x. However, we can say that:

If x is a positive number, 7x is a negative number.

If x is a negative number,_ a.x is a positive number.

If x is zero, is zero.

__There are some general laws involving this new operation

negation, which you should be aware of:

a) For all integers z, -(7z) = z
Note that this follows from the definition of the

operation negation.

For all integers x,y

b) ( x) j Cy) = x

c) ("x) (y) = (x y)

d) (x) (y) = -(x J y)

Let's go through a demonstration of (b) above;

i.e. we'll prove ( x) j(-y) = xjy, by using the definition

of negation and 441.

case is if x,y are natural numbers,

then ( x) j C30 = (x*) (y ) = x y = x .47 y

case ii: If x,y are both negative numbers,
* *

then x = a and y = b , where a,b are

natural numbers sc

x y = (a ) ,(b ) = ab
also, (-x) %T(-y) = (a *) (b *)

mit a a. b

= a b

bus, rx) Cy) = x J y
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case iii: If x is a natural number and y a negative

number, then y = b*, where b is a natural

number. So (' x) (-y) = ( x) j (b )

= x b

= (x 041 b)*

Also, (x j y) = x 11 b* = (x Oj b)*

Thus, (x) ej (y) = x y

case iv: If either x or y is zero.

With no loss of generality, suppose x = 0

and y is any integer.

Then (x) (y) = ( 0) ( y)

= 0 j (4-y)

= 0

Also, x y = 0 43. y = 0

Hence, ( x) ej ( y) = x ej y

The other three laws (a), (c), (d) above may be proven similarly

by going through the four cases as we did in proving (b).
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Today we will finish our study of the set of integers

* k *
= (1,2,3,..., 0 , 1 jG 2.,.),

----"V"--0

natural zero negative
numbers integer-.:

Although we have found that for all integers x,y

no.a( y)=Ici,y, this does not say that the product
0

of two negative integers is a posittve integer, since (x)

may in fact be positive. In order to express the general

proposition that a product of two negative integers is a

positive integer, we would write: For all natural numbers,

b,c, b 41. c = b c.

Finally on J, we want to introduce the operation -J,

called subtraction. Recall that on the set W, subtraction

had many messy conditions accompanying its use. This will

not be the case on 4; here, precisely is one of the reasons

we decided to extend the set W.

First we need the

Theorem: Given any integers x,y, there is one and only one

integer z such that x +7 z = y.

Once, this theorem i aztablished we call introduce the

Definition of Subtraction on J.

Given and integers x,y, we define y - x to be the unique

integer z such that x z = y.

How we would prove the above theorem: There are many cases

to consider but once you cee the general procedure, it will

be easy for you to complete tine proof,
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Case 1: Suppose x,y are both natural numbers.

Subcase 1.a: Suppose y > x. Then by the theory of

subtraction for the whole numbers, there is a whole

number z (namely, y - x) such that y = x + z.

This whole number z is an integer because all the

Whole numbers are among the integers and also y = x +47 z,

since + is an extension of +.

Subcase 1.b: Suppose not y > x; i.e. it is the case

that y < x. Then since there is no whole number

which can be added to x to give us y, we must look

for a negative number which will work. Let's take a

whole number b (namely, x - y) such that y + b = x.

Furthermore, b /0, since y + 0 = y and y + b =

and x ,4 y, since by hypothesis y < x.

Thus, we know b is a whole number different from zero- -

that is, a natural number. So there is a negative

number b*. Let's see if b works--that is, we would

like to show: x + b* = y.

We know: y +or b = x

Adding b* to both sides using the logic of equality,

we get (y +j b) +j b* = x +j b

The associative law for +
J2

applied to the left side,

gives us y (b +j b*) = x +j b*

i.e. y +j 0 = x +41 b

and by the additive identity for +j, y = x +1, b*
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Thi's completes the proof of Case 1; the other cases

follow analogously.

We finish with a few examples of general statements for

the subtraction operation -J.

(i) For all integers x, x - 0 = x and

x x =0.

(ii) For all integers x,y,z,

x (y +41 z) = (x -; y) -3 z

Note: no messy conditions here, as there were when

the analogous law for W was discussed.

(iii) For all integers x, 0 -j x = x

Notice that x may be a negative number, zero, or a

natural number.

And Most Importantly,

(iv) For all integers x,y, x -1-41 (-y) = x -j y

Now, with the idea of making addition, subtraction and

multiplication more intuitive, we'll discuss an application

of the negative numbers, one connecting the negative numbers

with geometry. We'll consider a straight line, straight in

the sense of Euclidean geometry; in principle, it has no

left end and no right end. We distinguish a line (infinite)

from a line segment which has ends. Arbitrarily, we place a

point on this line we call 0, and to the right of 0 we

arbitrarily place anothr point we call 1. Example:

1
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We'll now use the distance from 0 to 1 as our unit

for measuring length, and using it we can proceed to label

the points 2,3,4,... to the right of 1 and the points

-122,3,... to the left of O. This line with the points

so labeled is called in elementary school a number line; a

partial representation of it would look like this:

INED IMO

3 2 1 0 1 2 3 4

1W-11 now construct a kind of slide rule. (In fact,

you could call it an analogue computer.) Imagine it to be

made of two pieces of some material, one piece -sliding on

the other; both infinite, but one is fixed while the other

can slide next to it. On each is a representation of a

number line. It looks about like this:

sliding scale -6sliding 2 1 0 1 2 3I Milli
fixed scale

...'3 -2 -1 0 1 2 3 ....

Here is the waj it works: Suppose we want to add the two

integers 2 and 3. That is, we want to find 2 +.1 3.

(i) Take the 0 point on the sliding scale and slide it

over to the number 2 on the fixed scale, like this:

'3 -2 -1 0 1 2 3

I
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(ii) Find 3 on the sliding scale and

(iii) Obtain the answer by reading the number opposite

this on' the fixed scale, in this case %.

Thus -2 + 3 = 1.

Finally, let us mention that our use of +47 and -11

are pedagological devices, helpful, for understanding the

extension of W to J. Once we have the knowledge of these

new numbers and the laws governing them, we never need to

return to our old dafinitions. Hence, from now on, we'll

drop the subscript J on + and ,

5
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As an intuitive aid to understanding addition in the

set J of integers, we introduced a hypothetical slide

rule: ... -3 -2 -1 0 1 2 3 ...

-1 0 1 2 3 ...

sliding scale

fixed scale

To find the sum, x + y, where x and y are any two

given integers,

(i) Move the 0 point Ala the 31inina scale mpp^aitga

the fixed scale.

(ii) Find y on the sliding scale, and

(iii) The number on the fixed scale opposite y on the sliding

scale is the desired number x + y.

SS1.1
INF

Notice, from the side rule, we can distinguish the following:

Case 1: If 'coy are natural numbers, then so is x + y.

Example: 1 + 4 = 5

Case 2: If x,y are negative numbers, then so is x + y,

since the scale is moved to the left.

Example: -3 + -2 = '5

Case 3: If x is positive and y is negative (or vice-versa)

then the nature of x + y depends on the values of

x and y.

Examples: '3 + 2 = -1

1 + "4 = -3

-2 + 3 = 1
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Furthermore, we can use our slide rule for the operation

subtraction, if we first recall the most important general

law about subtracts .m ou J which stated: For any integers

x, y, x - y = x + y, That is, we rewrite the subtraction

problem as an addition. Example: -4 - 6, which by above

is the same as -4 ( 6), which is the same as 4 + 6,

ONO

because for every inteser Cx) x.

Thus, we are left with a simple sum of two integers which

can be cnrried _out on the A11d 2 _rule 493 bofDre..

Although the slide rule is an aid for addition and sub-

traction of integers, for multiplication we introduce the

concept of graphs. Suppose we have an equation such as

y = 2 x; associated with this equation is a picture called

a graph derived as followS: First we draw two number lines,

one horizontal, called the horizontal or x-axis and one

vertical, the vertical or y-axis; both of these lines

crossing at their respective 0 points, as follows:
3

-i- *2 -t. ° t t 61

-1

-1
"Fa

A pair of number lines drawn as above is called a set of

co-ordinate axes. Within the plane of these co-ordinate axes,

we place a point, the geometrical picture of any ordered



Lecture 17, May 10, 1968. 3

pair of integers (x,y), where the first member of the ordered

pair refern to the distance and direction along the horizontal

axis and the second member refers to the distance and direction

along the vertical axis.

The two-otdered pairs (-2,3) and--131-,114 would-have

0 3
(314)

their representation a follow,: f_is

t I--4 -3 -7. - 1 z 3

-3

-3

Now, to get the graph of the equation y = 2 x,

(i) Choose various arbitrary integers as values for x.

(ii) Compute the corresponding value for y, and then

(iii) Plot (draw) the picture of the ordered pairs (x,y).

Using the equation y = 2 ox, we first choose values of x,

say 0,1,2,3,1,5; these are arbitrary. Now we compute,

using the given eauation. the values of y corresponding to

these values of x and conveniently list them in a table:

x 1 y

0 0
1 2
2 4
3

-1
6

-2
-2 -4

Using these five ordered pairs [(0,0),(1,2),(214),(3A(1,2)

(-21-4)], we plot the graph of these points drawing in what
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appears to be a straight line connecting them, as follows:

4 a
(3,6)

(2,4)

(1,2)

-6 -S-44 -3 -2

Graph of

y = 2 x

(0 0)

(2,4)
-4

Notices tbat if we flid not know the product of 2 and 1

or the product of 2 and 2, the graph of y = 2 x could

suggest them, since even /fithout these products, we would

have a straight line connecting (3,6), (2,4) and (1,2).

Extending this line on both sides, to arrive at 2 10 we
would locate 1 on the horizontal axis and notice that

the ordered pair or the line of the graph of y = 2 x whose

first co-ordinate is -1 is (-1,2): Thus 2 *1 = 2.

Similarly to arrive at 2 0-2, we first locate -2 on the

horizontal axis and sea that the ordered pair on the graph of

y = 2 x whose first co-ordinate is 2 is (-214). Thus

2 -2 = 4.

Now drawing the graphs of y =ix, y = 2 x, y = 3 x, etc.,

you can see that as the whole number which we multiply x by

increases, the corresponding graphs increase in steepness.
y = 3 x

y 2- x

y X

11
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From these grVls, this much should be clear: If the "x-value"

is negative, the corresponding ordered pair on any of these

graphs will hue a negative "y-value". Thus, we can conclude

that when we multiply a negative number by the positive number

1 2 or 3," the result ia_negatime.__Moreoverl_we_could

continue drawing the graphs of y = b x for b any positive

integer, getting steeper and steeper graphs, and then be able

to conclude that the product of a positive and a negative

rumber kill always be negative.

Once this is done, we could plot the graphs of y = 6.1 xs

y = 2 x, y = 3 x, or in general y = 9.71C, where b

is any positive number; this would result in the following

graphs:
y = 3 x
y= 2 x

y= x

From this series of graphs we could conclude that for x any

negative number, the corresponding value for y in the graph

would be positive--that is, the product of any two negative

numbers in a positive number.
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Let us quickly review some of the details of graphing

using as our first example the equation y = 2 x. We first

arbitrarily select values for x substituting them into

this equation and so getting avalue for y. We summarize

the values so obtained in a table: x--

And now we plot them:

y = 2 x
1,2)

0,0

Similarly we plot the graph of y = 2 x

y-axis
x y

1 -2
2 -4
3 -6
4 "8

(2,4)

(1,2)

2
4
6
8

-2
-4

x-axis

y = 2 x

2)

x-axis

(2,-4)
Notice that: Taking a negative value for x and asking what

is the corresponding value of y (looking only at the

graph) we see that the peoduct of two negative numbers

gives us a positive number
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Finally, we mention that graphs of additive equations as well

as the multiplicative equations are meaningful entities..

y-axis
Example: y = 2 + x

1
2
3

3
4

5

Some Other Aspects of the Integers,

If we're given a positive integer, say 5, then its

clearly possible to break it into a sum of two smaller integers;

for example, 5 = 2 + 3. Similarly we can break 2 and 3

down, finally getting 5 = 1 + 1 + 1 + 1 + 1. It should Cao

be quite clear that every positive integer may be broken down

to a sum of l's.

However, for the operation multiplication, the case is

quite different. For example, 5 cannot be broken down

into a product of two (or more) smaller integers, and so 5

is called a prime number. As another example, 196 can be

broken down: first, since 196 is an even number, we see

that 196 = 2 98. However, we can go still further.

i.e. 196 = 2 98

= 2 2 .49

2.2.7.7
= 2

2 .72 , using our exponential notation.
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Notice, we cannot continue this process further since 2

and 7 cannot be broken down into a product of smaller

positive integers; they are both prime numbers. Thus, we

have represented 196 as the product of two prime numbers

each "taken" twice, In fact, we have the

Theorem Every integer not 0, 1, or 1, which is not

itself prime can be expressed as a product of positive

prime numbers (with a factor 1 in case the given number

is negative) and indeed in only one way (aside from different

orderings of the prime factors or extra factors of 1) .

Consequently, in the set J of all integers, we distin-

guish the following types of numbers:

(i) 0 : The additive identity element.

(ii) Units : 1, 1. These elements have a multipli-

cative inv,rse in the set J--i.e. given either of

these number, say 1, we can find a number in J

which when multiplied by the given number results

in the multiplicative identity element in J, which
is 1. In other words, 1 is its own multipli-

cative inverse, and 1 is its own multiplicative

inverse since -1 61 = 1 and 1. 1 = 1.

Notice, however that 2 has no multiplicative inverse;
that is, there is no integer which when multiplied b, 2

gives us 1. In_factl_there are no integers except 1 and
1 which have multiplicative inverses in the set J. Thus
the only units in the set J are 1 and 1.
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Before we continue, we introduce the

Definition of Divisor: Given an integer x, we call z a

divisor of x or a factor of x just in case there is

some integer w such that x = z .w.

Now,- all other elements in J are divided into two kinds:

(iii) Primes : These are the integers x, other than 0

and the units, whose only factors are 1, 1, x, x.

For example, 5 is a prime, since the only divisors

of 5 are 1, 1; 5, 5. Similarly, --.13 is a

prime,

(iv) Composites : All integers other than 0, the units

and tho primes.

Example: 26 is a composite since it is not 0,

not a unit and not a prime. (26 = 2 -13)

Now that ra ha -e subdivided the integers into various

categories, lets inva3ti-,ate a few applications. First, a

Defin:tion : Giver, any positive integers x,y, by a common

divisor of x and y, we mean an integer z which is a

divisor of both x and y,

We now state ( but do not prove) a

Theorem: Among all commnn divisors of x and y there is

_a certain positive integer z such that every other common

divisor of x and y is also a divisor of z, Thus we have bn
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Definition: This unique common divisor of x and y is

called the greatest common divisor of x and y, abbreviated

g.c.d.(x,:).

Examples: (i) Given the two integers 12 and 18, we first

express them as a product-of prime numbers according to our

theorem. 12 = 2. 2 3

Now to find all the positive factors of 12, immediately we

know 1 is, and then we find the usoducts.of its prime factors;

first, one at a time; then two at a time, then three at a time.

Thus the positive divisors of 12 are: 1, 2, 3, 4, 6, 12.

Similarly for 18 = 2- 9 = 2= 3- 3. Its divisors are 1,2,3,6,9,18.

Now the common divisors of 12 and 18 are: 1, 2, 3, 6

and the L'ord12,181..1.EEi since all the other common

divisors of 12 and 13 are divisors of 6.
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At the last lecture, we introduced the following two

definitions:

1) Definition of Divisor. An integer x is a divisor or

factor of an integer y just in case there is an

2

integer z such that x. z = y. To express this we

use the notation xly, which is read x divides y

or if it is not the case that x divides y, then

we write Nty.

For example; 316, 3118, 3/120.

Definition of Prime. An integer y is a prime number

just in case the only factors of y are 1, -1, y,

Examples: 7 is a prime

14 is not a prime

Concerning these newly defined notions of prime and

divisor, we now state a few General Statements or Laws:

as divisor we have: 1) Transitive Law for Divides

If xly,z are any integers such that xly and ylz,

then also xlz. In order to prove this law, which we leave

as an exercise, look carefully at the proof previously given

for the transitive law for the relation <.

2) If x and v are any integers

such that xly and ylx then x = y or x = y.
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For Primes we have: 1) If x is any positive integer, then

there is a prime number z such that z > x. This famous

theorem involving primes goes back to Euclid and his proof

of it is both simple and elegant).- Notice that the law states

that there are infinitely-many prime numbers.

2) If z is any positive even number,

then there are numbers x and y which are either prime or

1 such that z = x + y. This is a general statement since

tit involves all positive even numbers. It was first conjec-

tured by a man named Goldbach about 200 years ago and it

still remains a conjecture today--that is, its truth or fal-

sity has not been de-;ermined.

We have previously introduced the definition of greatest

common divisor of a given pair of positive integers x and

y. There are two basic methods for finding this g.c.d.(x,y).

Method 1: Factor x and then y into their prime factors.
al a,

an
b2.Say x = pl p2`. ....pnn and y = pl p2 Pon

where pl,p2,...,Pn are the prime factors of x and y,

and al,a2,...,an,b,,b2,...,bn are the whole number

exponents of these factors. Some of the a's and b's

may be zero. Then the g.c.d.(x,y) is the number z,

where z = pi1 ft p2
c
2

pnn and where

1 See What is Mathematics? by Cemrant and Robbins.
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el = minimow of (al,b1)

C2 = " (a
2'

b
2

)

n-
If 11

-Canlbn)

Notice: minimum of (al,b1) =
al if al < bl

or

b if b < a1 1 1

For example: To find g.c.d.(12,18)_, first we factor 12

and 18 into their prime factors.

12 = 2 6 = 2 2 3

18 = 2 -9 = 2 .3 3

Therefore g.c.d.(12,13) = 2min(211) 3min(102)

= 21 31 = 6

i.e. 12 = 22 3
1

i.e. 18 = 21.32

So g.c.d.(12,18) = 6.

It is a lucky accident that the primes in the above two decom-

positions are th2 same. The following example shows that

regardless of thE original prime decomposition, we can intro-

duce primes raised to the zero power in the decomposition so

that they will al7ays the same.

Say, we want to find g.c.d.(48,76). We first factor

the two numbers.

48 = 2 2. 4 3 = 2- 2 2 2 3 = 2
4

3

76 = 2 -38 = 2 2 19 = 22. 19

But also, 48 = 24. 31 lq°

76 =
22,

30 191
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Hence, g.c.d. (48,76) = 2min(
4,2).3min(1,0).19min(011)

= 2
2
.3
0
-19

0
= 2

211

i.e. g.c.d.(48,76) = 4

4.

Method 2 Euclid's Method): Again, say we're asked to find

g.c.d. (76,48). First, divide the smaller number into the

larger, getting a remainder. 76 = 1.48 + 28. The method

of Euclid says: g.c.d. (76,48) = g.c.d. (48,28). Repeating

this procedure for g.c.d.(48,28), we first divide 28

into 48, getting 48 = 1.28 + 20. Again Euclid's method

says g.c.d. (48,28) = g.c.d.(28,20). Again, dividing

28 by 20, we get 28 = 1.20 + 8. Thus, g.c.d.(28,20) =

= g.c.d.(20,8). So, again we divide 20 by 8, giving us

20 = 2.8 + 4. Therefore g.c.d.(20,8) = g.c.d.(8, 4). Now,

however, it is easy to see that g.c.d. (8,4) = 4. Thus,

but Euclid's method we have that

g.c.d.(76,k8) = g.c.d.(48,28) = g.c.d.(28,20) =

= g.c.d.(20,8) = g.c.d.(8,4) = 4.

So, by the logic of equality, g.c.d.(76,48) = 4.
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We have seen that for any pair of integers xsy there

is a g.c.d.(x,y) such that Rvery common divisor of x and

y is a divisor of it.

To find the g.c.d.(x,y) we have investigated the

two following -methods:

Method 1: Obtain prime decomposition of x and y; then

use minimum exponents for each prime.

Method 2 (7uclid's Algorithm): Division with remainders.

e.g. to find the g.c.d.(136,26), we divide 136 by 26

getting 5 with remainder 6 -- that is, 136 = 5 26 + 6

And Euclid's Algorithm says g,c.d.(136,26) = g.c.d.(26,6)

Repeating this process, 26 = 4. 6 + 2, and so.

g.c.d.(26,6) = g,c,d.(6,2), which clearly is 2.

Question: Why does this process of division with remainder

give us two numbers whose g.c.d. is the same as the g.c.d.

of the original pair of numbers?

In order to auswer this question, we will first make

clear what we mean by division with remainder and then pr'ceed

to a justification of Euclid's Algorithm.

Theorem: Given any positive integers x and y, there are

whole numbers q and r such that

x =qy+r and r_< y.

We describe these numbers q and r by saying that q is

the quotient upon dividing x by y and r is the remainder.
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In the above example where we found the g.c.d.(136,26),

we first found that 136 = 5 (26) + 6. In this example

136 is x, 26 is y, 5 is q and 6 is r.

If we use this theorem, then the key step in Euclid's

411gorithini is the

Theorem: g.c.d.(x,y) = g.c.d.(y,r)

Our proof of this theorem will thus be the justification

-for the Euciinean AlgorIthm. We -dl-vide the pvuof -into two

parts:

Proof Part 1: Suppose z is any common divisor of y and

Then we claim that z must also be a common divisor of x

and y.

Proof of claim: We're assuming z is a common divisor

of y and r, so by definition of divisor y = z a

for some integer a, and also r = z b for some

integer b. By our 1st theorem we know x = q y + r .

Into this equation we substitute the values of y and

r we just found (using the logic of equality).

Thus x = q (z a) + z -b

Now using the commutative and associative laws

for multiplication together with the %.listributive law,

we transform the above equation into x = z (q a + b)

Since q is an integer (all whale numbers are integers),

a is an integer and b is an integer, by the closure
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law for multiplication and addition we know q a + b

is an integer. Hence by definition of divisor, since

z multiplied by some integer gives us x, we know z

is a divisor of x. Since we assumed z was a divisor

Sr.

-we now- know z is -a common divisor- of -x and

Proof Part 2: Suppose w is any common divisor of x and

Then we claim w must also be a common divisor of y and r.

Proof of claim: By assumption, x = w p -for some

integer p and y = w n for some integer n. From

the theorem about division with remainder, we know

x = y .14 + r. Adding the integer (y q) to both

sides gives us

x (Y = (Y .c1 + r) Y cl

which reduces to x (y. q) = r .

Now replacing x and y by what we found them equal to

gives us w p ((w n) q) = r. Using the nacess---

ary general laws (what are they?) gives us w(p - n q) = r

But p - n q is some integer (why?). Thus by defini-

tion w must be a divisor of r, and since we were

assuming w a divisor of y, we now know w is a

common divisor of y and r.

The proofs of Part 1 and Part 2 are now complete.

Putting these two parts together tells us that all the common
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divisors of x and y are the same common divisors of y

and r. So in particular it must be the case that the great-

est common divisor of x and y is the greatest common

divisor of y and r -- i.e. g.c.d.(x,y) = g.c.d.(y,r).

The Concept of Least Common Multiple

Definition: Given any integers u,v we say that u is a

multiple of v just in case (if and only if) v is a

factor of u i.e., a is a multiple of v just in case

u = a v for some integer a. u is a common multiple of

v and t if and only if u is a multiple of v and u

is a multiple of t.

Query: Does every pair x,y of integers have a common

multiple? Yes, since the integer x' y is a multiple of

x and also a multiple of y.

Now there is a theorem which says that for u,v any

integers different from 0, there is a smallest positive

integer which is a common multiple of a and v. By definition,

we cal:. this integer the least common multiple of u and v

and write it as 1.c.m.(ulv). Can you see that every common

multiple of u and v is a multiple of 1.c.m.(u,v)?

How to find the 1.c.m. of two given non-zero integers.

We illustrate by two methods, finding l.c.m.(14,21)
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Method 1; Express both numbers as a product of primes,

then find the product o" the primes with maximum exponent.

We illustrate: 14 = 2 . 7 = 21 e 71 = 21 30 71

21 = 3 7 3
1 71 = 2

0 " 31
7
1

So 1.c.m.(14, 21) = ,max(1,0) 3max(0:1). 7max(1,1)

1= 2 -51 1
=_42__ _

Method 2: First use Euclid's Algorithm to obtain the

g.c.d. of the given pair of numbers, Then use the general

law which says

WVwmovu,N)
g.c.d.(u,v)

So again using the two numbers 14 and 21 we first find

the g.c.d.(14, 21) by Euclid's Algorithm.

21 = 1 ' 14+ 7

So g.c.d.(14, 21) = g.c,d.(14,7)

=7
Now applying the for above, we have

14 . 211.c.m.(14,21) -
7

= 42 0

and this checks with mthod 1.

Our last topic in the system of integers is the relation

of order for the iategern. Recall that in the system of whole

number we had an order relation < , When we extend the whole

number system of integers we also would like to extend <

to a new relation which we'll temporarily write as <qi Also

remember that the abstract relation < corresponded to the

visual relation "to the left of" when we lined up the whole



Lecture 20, May 20, 1968. 6

numbers in their counting order. It is natural ti-at the new

relation <J corresponds to the visual relation "to the

left of" on the number line 4 1 4 t

"'-'2 -1 0 1 2

We make this concept more precise by a

Definition: For -icy -Any integers we define x <i; y by

the following cases:

(i) If x and y are both whole numbers, then we

define x < y if and only if x < y. (This assures

us that < is an extension of .)

(ii) If x is a negative number and y a whole number

then it is always true that x <11 y .

(iii) If x a whole number and y a negative number

then not x <J y.

(iv) If x and y are both negative numbers then there

are natural numbers a,b such that x = -a

and y = -b there it will be the case that

x <J y if and only if b < a.
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We have extended -the whol-e_number-system (Ws+, i) to

a-new. and larger -system. the integer number system (J,+, -).

However, this new system also has deficiencies, which we'll

'-now discuss from two points of view, the pure and applied

I) Pure Mathematics

Recall that in the system of whole numbers we can find

numbers a and b for which there is no number x such

that a + x = b. Just take a = 1, b = 0. But in the system

of integers, for every a2b in J we can find an x in J

for which a + x = b. In fact, x can be taken as b - a,

for subtraction is always possible in the system (J2+,),

whereas in W we can only form b - a if b > a. However,

in the system J (just as in the system W) we can find

numbers a,b with a ( 0 for which there is no number x

in J satisfying a- x = b. For example, take a = 2, b = 1.

And in general, if a,b are integers with a y 0, we can

find an integer x such that a x = b only in case alb.

That is, a must be a factor of b. The analogy should now

be a little clearer, for here we're concentrating on solutions

to multiplicative equations, whereas before we wished to find

solutions to additive equations. Thus from-the standpoint of

pure mathematics we wish to extend our number system (J,+,)

to a new number system (R2+,12011) which will satisfy the basic

laws studied for earlier systems (e.g., commutative, associa-

tive, distributive, cancellation and identity laws) and which
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in addition will have numbers x satisfying a x = b for

any a,b in R, as long as ai 0. Moreover, when we extended

(W0+,) to (412+,-) we were then able to apply the operation

subtraction to any asb In J resulting in a number b - a

which is the_unique_solution to a + x=

a solution to a + x = b was only possible for numbers a,b

if b > a. In the system of integers, for a y(0 and when

alb we can apply division to obtain an integer b I a, and

this is the number x satisfying the equation a. x = b. So

just as when we moved from W to J, we were then able to

apply subtraction to lay a and b in J; similarly, when

we pass from J to R we will be able to apply division to

any a,b in R, as long as a / 0, regardless of whether

a is a factor of b or not.

II). Applied Mathematics

a) From the viewpoint of applied mathematics, recall

our construction of the number line, an infinite line with

integers attached tc certain points.

_
... -3 3 2 1 0 1 2 3

It is clear that there are gaps between adjacent pairs of

numbers. Can we findsnew numbers to attach to the points on

the line which are between those points having integers

attached to them? Clearly, this would be desirable for purposes

of measurement. Additionally, intermediate points on the
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num er line would be of use in helping us to locate points

on the plane when we use two perpendicular number lines as a

pair of co-ordinate axes. Of interest, also, is the connection

between these desired intermediate points on the number line

and those numbers x that satisfy a x =_b, O. On the

number line consider the point equally distant from the

points labelled 0 and ---4---i 4

... 1 0 1 2 5 ...

What would be an appropriate number to attach to this point?

More precisely if we had such a number, what properties would

it have? Well, if we label this point as x and lay off

the segment from 0 to x a second time beyond x we reach

the point 3. Thus we wish x + x = 3. That is,

x ° 1 + x 1 = 3,

Or x ( 1 + 1 ) = 3 ,

or 2 x = 3,

assuming, of course, our new numbers obey the general laws

previously studied.

In the same way many numbers attached to intermediate

points on the number line can be shown to satisfy multiplica-

tive equations of the form a. x lrz b.

b) A Second Applicational Viewpoint: Pies, the model

most often found in elementary school texts. The whole

Limbers were originally introduced to answer the question

"How Many?". i.e. How many obje:ts were in a given set?

i.e. Given a set A, what number n(A), do we get by counting
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the elements of A? In our new extension we would like our

new numbers to help us answer the question "How Much?".

e.g., given a portion of a whole pie, just how much of the

whole pie is represented therein? In other words, we seek

x, to attach to each slice of pie in such a way as

to give us a way of "measuring" how much of a whole pie it

ecntains. Once again, there is a connection between these

numbersattached to pie slices and those numbers which satisfy

-a -x= b. Suppose we divide a pie equally into six portions:

What can we say about the number x which measures how much

of the whole pie is contained in each slice? Clearly, it is

a number which wher added to itself six times gives us a whole

pie. That is, x+x+x+x+x+x= 1,
or x -(1 1 + 1 + 1 + 1 + 1) =1

or 6 x = 1

Analogously, suppose we want to divide two pies equally

among five people. The number y attached to each slice

would then clearly satisfy 5 y = 2.

c) The following applicational viewpoint, Probability,

has not generally been discussed in the elementary school;

nevertheless, in the world around us, it is an extremely

pervasive concept. The classic example, and one extremely

useful, is coin tossing experiments or selection of bails from
a box (or urn),
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At the last lecture we saw that an extension of the inte-

ger number system (J,+,) was desireable in order to solve

certain multiplicative equations- -that is, the integers did

not contain numbers that satisfied certain equations and this

_deficiency has thus provided the motivation for constructing

a new number system. However, what exactly should we construct?

Our approach to this question can perhaps be clarified by an

analogy. If we were asked to go to the forest and seek an

mal called -a Frumkin, about which we knew nothing, it

would be an impossible undertaking; if, however, we found out

that this Frumkin has four legs, a brown-ringed tail, fourteen

violet whiskers and travels about in packs of no less than

sever). other Frumkins, our task would certainly be an easier

one.

What do we know about what we are seeking? We know we

are looking for some number system, we'll call it (R,+R,.R),

such that:

(i) It is an extension of the previous system (J,+,).

(ii) The new system sould satisfy the commutative,

associative, distributive, cancellation and identity

(for 0 and 1) laws. For example we want this

new system to satisfy the restricted cancellation

law for -R -- For every x,y,z in R, if

x . y = x 1 z and if x 0, then y = z.



Lecture 22, May 242 1968. 2

(iii) For any numbers a,b in R, if a 71 0 then there

is a number x in R such that a x b

(note that this property is not satisfied in (J2+,))

Let us begin our search for (R,+11,R) as we did when

we- extended -).-

Part I: Axiomatic Approach--let us simply assume that we have

found a number system (112-1-R,R) satisfying properties

(i)-(iii) above and explore the consequences of this

assumption. This is to help us later on in our defini-

tional approach.

With this assumption, we start with a

Theorem: Given any nu.abers ajb in R with a 1 0, there

is exactly one--no more--number x in R such that a R x = br

Remark: (iii) above guarantees the fact there will be one

number x such that a -R x = b. This theorem tells

us there are no more than one.

Proof: Suppose a,b are any numbers in R with a 71 0

suppose that x and y are numbers in R such that

a R x = b and also a -11 y = b. In order to prove

this theorem, we must now show that x = y, for then

there can be but one solution to a -11 x = b. First,

by the logic of equality we see that a 'II x = a R y.

Also by assumption we know a 74 0, so we can apply the

restricted cancellation law for Rs so

This theorem becomes the basis for a

x = y
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Definition: Given any numbers alb in R with a / 0, we

define the notation
a

to be the ,unique number x of R

such that a .R x = b.

(How to we know this number x is unique?)

Warning: The textbcQk uses -12 as a symbol _for

the ordered pair (b,a).

1
st

Question: Suppose albleld are numbers in R with

a 0, c 7(0. Can we have
b

=
d9
-E.

Answer: Of course; whenever b = d and -a = c.

More Interesting Question: Are there other times? That is,

can we have
b
=

d
even if b d and a c?a c

The answer to this 2
nd

question is yes, as shown by the

Theorem: Let a,b be numbers in R with a y 0 and let
b R m

m be any number in R such that m O. Then
a a R m

Proof: By definition,
a

is the unique number x such

that (i) a x = b
" b 911 m

Also by definition, is the unique number y such that
la m

(ii) (a -R m) .Ry= bRm

Multiplying both sides of (i) by m, we get.

(a R x) m = b R m

which we can rearrange by the commutati7e and associative laws

o R to give us

(iii) (a R m) x = b
R
m
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Now compare (ii) and (iii). Recall that the y in (ii)
b .R m

wasunique. Thus in (iii) x must also be a ..Rm

b R
m

Hence = , and the proof is complete.
a a R m

Question:. Can we have numbers aLblc,0 in R with ail

c 0 such that

b d

We're asking here if there exist fractions in R that are

not the same, for perhaps all fractions in R are the same.

This is not so and we show this by example. Since R is

an extension of J, we know all our old numbers (the integers)

must be in R. Using this fact together with the fact that

2,13, we show that
2 3

Notice that 4= 2 because 4 is the unique x such that

2
1 x T2. But we know 1* 2 = 2. Hence = 2 Also 3 = 3

since 3 is the unique y such that 1 y =3. But we

3
know 1 3 = 3. Thus = 3. Since 2 / 3, we know ,

by the logic of equality. So we see there are in fact different

fractions. More generally, we have the

Theorem: If a yi 0, b/d, then b d
i[yili

Proof: We leave the proof as an instructive exercise.

Combining the above two theorems on fractions, we get

the following criterion for fractions:

b d
lintli if b R c = a R d

and
b d
a.c if b R c yi a R d
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We began our axiomatic approach to the rational number

system by assuming

(1) (R,+R,R) is a number system, an extension of (jp+,')

(ii) Certain laws hcld for (R,+R,R)

(iii) For any numbers a,b in R, if a 0 then there

is some x in R such that a R x = b.

We proved last time the following theorems:

1. Given a,b in R with a 1 0, there is :exactly one

.x In R satisfying _a R =

This theorem was the basis for defining to be the

unique number x determined by a and b.

2. If a,b are any numbers in R with a/ 0, then
b m

= for every number in R that is not zero.a a .

11

Rm

Another theorem (which we did not prove) gave conditions

when fractions were net equal.

3. If a / 0 and bit c, then
b c

Try to prove this--go back to the definitions of

and a.

Problem: Given two fractions and with a yi 0, dyi0,
a

how can we decide whether or not b
a

c9
d'

Solution: Using Theorem 2, we try to find suitable numbers

t,g and e (with a/0) such that a = 1 and ii=

Having done this we know that if f= g then by logic i=

and hence a = , and if f /kg, then 1:yil! by Theorem 3;
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c
hence

b
d

Notice that the crux of this is finding suitable
a

numbers f,g and e in _order.to express as and

as I.

We give two ways for doing this.b R
d

(i) First way. We know-i 77--_ by Theorem 3 and the
" R

c
fact that d 0. Similarly -a=

c
R a

Thus, sinced 1 a

a R d = d -R a by the commutative law for R (which

we1re assuming), we can now complete the comparison.

In more familiar language what we've done is find a

common denominator for both fractions, whereupon we can

compare the numerators,

(ii) Second way. Similar to (i) except that the number e

is chosen as the least common multiple of a and d.

We'll now illustrate both of these ways with a numerical

example.

Question: Is the same as IT?

7 7 6 42
EFT 13

Now since 42 y4 40 we know that yi .

by method (ii): What is the 1.c.m.(6,8)? Easy to see

that it is 24, by multiplying 6 successively by

natural numbers until we reach a number that is a

multiple of 8.
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5 4 20
Hence, -6 = -7-4 - -2-4- and

7 7 -3 21
13 sEr-3 Tn.

Since 21 1 20, we know that -
5

We'll_now try to make some contact with_our textbook.

Let's take a fraction, say -6; by definition this is the

unique x such that 6 -
R x = -8. We also know from

Theorem 2 that:

-16 -24 -32
12 18 = ..

8 16 24= =

Our textbook considers these fractions as members of a set
-8 -16 -24 8 16 24
-15 2 -12 2 ra 715 2 -12 ' )

By our definition of fractions the number of elements in the

above set is 1, since by our criterion all the elements are

equal. However, the text gives the notation
a

a different

meaning--in the text
a denotes the ordered pair (b,a);

hence, by the text's definition the above set has an infinite

number of elements. The book is taking a definitional approach

to the rational numbers and has defined

((8,6),(-16,12),(-24,18),...,(8,-6),(16,-12),(24,-l8)} =14

We, however, are proceeding axiomatically. Later on we shall

actually construct the rational numbers.
r.
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Problem: Given rational numbers
a

and where a,c 0,

can we express
a +11-a

as some new fraction for suitable

numbers f,e (e/0)?

-The answer, of course, is yes, and we'll show how we

can derive the answer within our axiomatic framework.

First, we'll consider the simple case where a and c

are equal. Thus, we wish to find --
a 'R a'

Recall that: is defined as the unique number x in
a

such that a -R x = b, and

is defined as the unique number y in Ra

such that a -R y = d.

By the logic of equality, we can add these equations getting:

(a x) +R (a y) b +R d.

Using the distributive law for R, this

a -R (x +R y) = b +R

can be transformed to

d

Hence, by Theorem 1 of today's lecture,

x +R y is the unique number of R which when multiplied

by a gives (b +R d). But by our definition of fraction
b + d

this unique number is R
Thus, x +R y is the same

b +
R

d b +R
as -- that is, x +R y = a" Since 11= x

and i= y we have thus shown that

b d
b +

R
d

a

This last underlined equation tells us that to add two frac-

tions with the same denominator, add their numerators.
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We first reiterate the criterion discussed at the last

lecture.

Given
b

' c
-- -- with ale 0, to determine whether or not
a

t

these are the same rational number find suitable numbers

e,f,g so that

=
d

and - = E
a e

c-

That is, express both fractions' with a common denominator.

Then
b
=

d
if f = g and

b d
if' f g.a c a c

Methods for finding e,f,g:

(i) Take e = a -R c. Then f = b -R c and g = a -R d.

(ii) Take e = 1.c.m.(alc); then find appropriate fa.

For some obscure reason this is the method customarily

used in elementary schools.

In actuality, we can take the new deminator e to be

and common multiple of the denominators a and c and

then find suitable numbers f and g.

You should have in mind the fact that all our work with

fractions has depended on our definition of
a
-- as the unique

number x of R such that a .R x = b. In addition, the

proof of the above criterion depended on the following two

theorems:

1) Given
a
--, a / 0 and given any number my(0, then

b
-b m

if

. We proved, this in detail.ii=a.Rm
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2) Given 1: and g, e y1 0, if f Ft g then fi; )4

The proof of this theorem was left as an exercise.

Important Remark: In elementary school a theorem such as

Theorem 1) above would not be proven. Nevertheless some

2

-intuitive evidence for its truth can and should be presented.

One way would be to use a number line:

Suppose we're given
-8

= -8 2 8 -16
- . i.e. - .

1
st

: Find that distance which if layed off seven times

beginning at the zero point would take us to the point

(:)
marked 1. Lay this distance off in both directions

eight times. Thus we have: 8/7
8/1

1 0 1

2 1 0 1 2

and we want to illustrate that

There is a way to now see without laying off any new

distances that -- by taking midpoints of the intervals

of 1 distance. Then we'll have a total of 14 equal

intervals between 0 and 1 and 16 of these .intervals on

the negative side of the number line takes us to the point

already marked .

Thus, the arithmetical process of multiplying the numera-

tor.and denominator by 2 corresponds to the geometric concept

of taking midpoints. This process of dividing the scale into
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finer intervals is simply a process of using different 1:41sic

units. Note hat ay quantity may be .1zpressed in a variety

of units; for examplo, 440 .;aids is the same as -

1
. mile.

In other words multiolying a number simply corresponds to

a change of scale.

Previously, we di.:,c;_:3sed tre
Theorem: Givc.1 ab,c 7, 4 0, then

b c
b c

a 1 a a

To illustrate thi3 ti7c1.:.em for the elementary schools, we

use a slide rulo s1mil2r to the one we previously used to

add integers liko 1 and -2.

2

sliding scale

--- --- fixed scale
0 1 or

2To find the sum of f.:-:;4ons like 1 , we follow the

same basic as b::fr.rc except we ucc4 a change of units,

dividing `:ilfJ unit of t:-.s fixed and sliding scales
_
2

in' :) fifths Vx4stni:ind--,1-r.--.5w,1 place the 0 of the

sliding scale ovt...
1 point the fixed scale and read
)

the answe:? on L:t the point corresponding to

2 1 2 1on the sliding i'zaln. Thus 5+ -5

2
a.

1 _5_0_

4/5 -26

- o 5
5

sliding scale

fixed scale
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To find the sum of fractions with denominators other than

5, the basic unit of the scale would naturally have to be

divided differently. One way to do this would be to use strips

of clear plastic that would attach to the scales of the slide

rule and could be marked on and erased quite easily. These

strips might not be part of the regu]ar classroom equipment,

and so it would be up to the indiviaual teacher to impress

upon the school district her need.

Now, to add two fractions with different denominators,

first convert them to fractions with the same denominator.

Example: To add .--.

b
;

n

and ! where a2q 0.

ba
b- n a .12 c

Since - and =q " and since
a a .R q q a -R2

b -
R

q a R c (b -R q) +R (a R c)
we know

q 1.1:1 a q a .R q 3

b c
(b -R q) +R (a -R c)

Thus 71. +R a R q

Rather than memorize this equation, one can very easily remem-

b c
b +

R
c

ber that --+
R aa
- =.------

,
using first the method for con-

vertingverting two fractions to fractions with a common denominator.

Recall that we mentioned an application of fractions to

the Theory of Probability: There are many simple experiments

possible for elementary school children which illustrate

various laws of probability. For example, there is the Iva

-for the probability of the union of two exclusive events:

Suppose the probability of event E is a certain rational
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number 11 and the probability of another event F is p.

Furthermore, suppose that events E and F are exclusive

(Which means they cannot both happen simultaneously). Then

the probability that either event E or event F will occur

is + .11. This law may be illustrated as follows: We

toss a fair die and designate event E to be: die turns up

with upper face showinE, snake eye (one dot). Since this is

a 1fair die, Probability (E) = 15. We designate asevent F:

die turns up with an even-number of dots on top. Since a

die has six sides, three of which have an even number of dots

and three of which have an odd number, Probability (F) =
1

Since events E and F are mutuely exclusive (why?)

e +Probability (either E or F) (l
v2

(1 6)

2 + 6

8=

or using the 1.c.m.(6,2) we'd get

1 1 1 + 3 4
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In our axiomatic approach to the rational numbers we've

assumed (111-F-R,R) to be a number system, an extension of

(411+,-)1 satisfying certain :laws and such that for any

a,b in R if a 0 then there exists
a

c R with

a = b.

For the operation +
R

we obtained the following formulae:
b +

R
c

and
b c

i) ii +R

b P m
ii) if m 0 then -a- =

d .M

Using these two equations we derived a formula for the sum

of fractions of unequal denominator:

c (b q) +11 (c 'R a)If a,q 0 then +R
a .R qa

Problem for the off, :'ration

pGiven
b

q
(a,a 0), can we express the product

a

in the form Si for suitable numbers f and e

(e 0)?

Of course, we can. The rule we all learned many

years ago is to take f = b -R p and take e = a -R q°

However, we are not interested in simply presenting a formula

for multiplication in R. Of more interest is showing how

the formula is obtained. This is done in mathematics by a

Proof: by definition of the fractional notation, -a- is

the unique number x of R such that

1) a R x = b and Ic't is the unique number y of R
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such that

ii) q sR Y Ps

From i) and ii) by the logic of equality we get

iii) (a 11 x) R (q -R y) = b -R p

__By several applications _of_the _commutative _and associative

laws for -R which are among our axioms (assumptions),

iii) becomes

(a .R q) .11 (x -R y) =b -R p

2

Using the last equation and what we have been calling

Theorem 1, we get that

x .R is the unique element of R

which when multiplied by (a R q) gives b -11 p. But by

definition of the fractional notation, this unique element is

b P
b .11 p

. Thus we have shown that x .R y
.11a q

Since x =
a

and y =

by the logic of equality.

p
b

R
p

we can conclude that ji R
" R

Some applications- of multiplication which contribute to an intuitiv

understanding of it.

1. Geometry -- the computation of area.

We have all learned that:

area of a rectangle = (length) (width).

What does this mean?

Given a unit length u, I this determines a
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unit area by forming a square all sides of which have

the unit u as length:

uL iu

rectangle _and we _find vile unit length

u can be laid off three times on one side and two times

for the other side, then using the above formula for

area we find that

Area = (3 -2) square units

= 6 square units

However, how do we know that if this rectangle is divided

up some other way than the above way we get the same

result for its area? Perhaps starting as we do below

and pasting bits and pieces of the unit area here and

there on the givm rectangle we would come out with 7

square units as the.area.

indeed the area of this rectangle.

tivjAa
through trial

We come to believe this by experience,

It-turns out that 6 square units is
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unwilling to rely on physical methods and have tried and

succeeded in proving this within a suitable framework

of axioms, but the proof is highly complicated. The

--theorem which they have proven says that it is impossible

to cut up a three by two rectangle using a finite numl.ar

of cuts and paste it together to form a figure with

anything other than six urits for area. However, if you

are allowed to cut it up into an infinite number of

pieces then it is possible. This is called the Banach-

Tarski paradox and shows that the notion of area is a

deep concept.

Now suppose we have a rectangle one side of which

1 1
has length lu and the other side haF.! length 75u.

The rectangle looks like this: 1u

Applying our formula for area,

area of this rectangle =
EL 4)

1 square

lu

square units

units.

A way to make this result intuitively convincing for

elementary school children would be to look at what we

mean by saying the rectangle has a side of length one-

half unit. We mean that if we lay that side off twice

we get a whole unit of length. Similarly for the length
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of the other side except we lay it off three times.

Thus, if we complete the unit squsre from these two

sides we get the following figure:
p

1 1 13u 3u 3u

lu

Visually gone can now see that the unit square is divided

into six identical pieces. Thus the original rectangle

1
has as area -6 square units.

Another application for multiplication especially appro-

priate when dealing with fractions is

2. Probabilkia Theory, and more specifically the computati

of the probability of simultane)us occurrences of inde-

pendent events.

Suppose our "equipment" consists of one fair coin

and one fair die.

Let E be the event: die is rolled and comes to rest

with 3 dots on its top face.

Let F be the event: coin is rolled and comes to rest

with head on top.

Clearly Probability (E) = -6 and Probability (F)

Question: What is the probability of the event that when
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3 dots on top and the coin will rest with the head on

top?

According to the theory of probability, as long as

the outcome of the coin rolling does not influence the

outcome of the die and vice-versa (This is what is meant

by independence of the event ', then

Probability (E and F) =
1 1 1=

As with area, there are deep questions connected with the

theory of Probability. To say that the Probability of the
1event E above is -6 does not mean that rolling a die 60

times will result in E occurring exactly 10 times. It means

that in a vast number of experiments each experiment consist-

ing of rolling the die once, the proportion of times that

1three dots appear on top would "tend to" 16. This concept

of "tends to", however, rests on the notion of limit, a notion

studied in that branch of matt matics called analysis.
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Final exam: ,Friday, June 7,,9 -12 220 Hearst Gym.

At our last lecture we introduced multiplication of

rational numbers and derived the classical school rule:

b db d
a-11 c a

411

additionally, we discussed applications to area and Probability

Theory.

Question: How can we obtain bm s a rational number of

the form e?

In elementary school the answer that's usually given is

a mysterious "Invert and Multiply", meaning

b d

b c
R

b
R

c

87-7a

is the same as

which is equal' to, by our rule for

multiplying fractions,

Our purpose here, however: is to under3tarvi wherc such

cryptic rules come from -- that is, how can it be derived

within our axiomatic framework?

b dFirst, let's examine what we mean by the notation

Definition: We define t -- to be the unique z of R
d bsuch that z Itt 7E me

d d
Since z R R z by the commutative law for

(one of our axioms), we have that b
t is the unique z
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of R such that .R z =
a Now from this last equation

using our definition of the fractional notation, we get that

this unique z is . Hence -- =
d =

a a c a
-Tr

Let us now try to find numbers x and y so that

1'

we can express z as -- that is, we're seeking numbers

x and y so that -c-

x
='

b
;. By our rule for multiplying

d x
fractions this means finding x and y so that =

.11 Y a

Look carefully at this last equations. Notice that if we

could find numbers x and y so that

dRx=b and cRy=a,

we would then be finished. In the realm of integers, however

we know there may not be such numbers x and y. However,

if we could change
a

to a new fraction whose numerator is

a multiple of d and whose denominator is a multiple of c,

then we could solve for x and y in the integers. We

can do this by a previous theorem, since

b b (d .R c)

a R (d .R c)

Thus, we are now seeking numbers x and y so that

d R x b R (d .s c)

c y a . d OR7T

commutative and associative laws for we see

that we can choose x = b R c and y = a R d . Thus the
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b R c
number z we are looking for is z = 2

we have shown that
b

b d a
-a-

-e-

b c
b c

a d a R

and hence

i.e. we the-rule for -dividing one-fraction by

another fraction.

This brings to a conclusion our axiomatic approach to

Rational number system. This system can also be reached

from the Integers using a definitional appryach, whereby

we would like to define a set R together with operations

+R and R so that:

i) the system (112+R, °R) is an extension of

the

ii) The basic laws hold for the new system just as they

do for the old, and finally the distinguishing

property of the new system

iii) Given any a,b in R, if a ,(0 then there is

some x in R such that a R x = b

Actually it is possible to accomplish this in a variety

of ways, all of which, haever, are motivated by first looking

at the axiomatic approach.

Our textbook approach, which is the most common defini-

tional approach, is to define the elements of R as sets of

the form (...(-1C2-14),(-52-7),(527)210214),(15221),...)

or in general ((a2b),(m a2m b)) where m = 1,2,32...2-1,-22.

(i.e. m can be any iriger except 0) and a and b have
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no common factor other than 1 and 1 and b > 0.

Now to define +
R

and
R

Given any two such elements of R, say ((mea,m- b))

and ((m c,m d)) we define -
R to be the operation such

that ((m a,m b)) R ((m csm d)) = Um x,m y)), where

x is obtained from a .c and y is obtained from b d

by division by the g.c.d.(a c,b d). By looking carefully

at our axiomatic approach we analogously define +R .

These above definitions do not exactly give us an exten-

sion of (J,+,) since our old numbers do not actually appear

in this new system. However if we replace those elements

of R of the form ((m a,m b)) by the element a of J,

we would then have an extension which agrees with what we

defined an extension to be.


